BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37257439)

  • 1. Radiological risk assessment of outdoor
    Hoang VH; Tai Tue N; Nguyen TS; Dang Quy T; Nguyen TD; Nguyen VD
    J Radiol Prot; 2023 Jun; 43(2):. PubMed ID: 37257439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radon ((222)Rn) concentration in indoor air near the coal mining area of Nui Beo, North of Vietnam.
    Nhan DD; Fernando CP; Thu Ha NT; Long NQ; Thuan DD; Fonseca H
    J Environ Radioact; 2012 Aug; 110():98-103. PubMed ID: 22445878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer of radionuclides from soil to Acacia auriculiformis trees in high radioactive background areas in North Vietnam.
    Duong VH; Nguyen TD; Kocsis E; Csordas A; Hegedus M; Kovacs T
    J Environ Radioact; 2021 Apr; 229-230():106530. PubMed ID: 33482539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiological Hazard Assessment of High-Level Natural Radionuclides in Surface Sediments Along Red River, Vietnam.
    Duong VH; Duong DT; Bui LV; Kim TT; Bui HM; Tran TD; Phan TT; Nguyen TD
    Arch Environ Contam Toxicol; 2023 Oct; 85(3):302-313. PubMed ID: 37233742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Tajikistan.
    Lespukh E; Stegnar P; Yunusov M; Tilloboev H; Zyazev G; Kayukov P; Hosseini A; Strømman G; Salbu B
    J Environ Radioact; 2013 Dec; 126():147-55. PubMed ID: 23995244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation exposure in a region with natural high background radiation originated from rare earth element deposits at Bat Xat district, Vietnam.
    Van Dung N; Thuan DD; Nhan DD; Carvalho FP; Van Thang D; Quang NH
    Radiat Environ Biophys; 2022 May; 61(2):309-324. PubMed ID: 35325277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of Well Waters from High-Level Natural Radiation Areas in Northern Vietnam.
    Duong VH; Nguyen TD; Hegedus M; Kocsis E; Kovacs T
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33430080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of radon sources and associated health risk in four underground uranium mines.
    Sahu P; Beg IA; Panigrahi DC
    Environ Monit Assess; 2023 Feb; 195(3):400. PubMed ID: 36790625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 222Rn and 220Rn concentrations in soil gas of Karkonosze-Izera Block (Sudetes, Poland).
    Malczewski D; Zaba J
    J Environ Radioact; 2007; 92(3):144-64. PubMed ID: 17194510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outdoor 220Rn, 222Rn and terrestrial gamma radiation levels: investigation study in the thorium rich Fen Complex, Norway.
    Mrdakovic Popic J; Bhatt CR; Salbu B; Skipperud L
    J Environ Monit; 2012 Jan; 14(1):193-201. PubMed ID: 22105600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radon emanation from low-grade uranium ore.
    Sahu P; Mishra DP; Panigrahi DC; Jha V; Patnaik RL
    J Environ Radioact; 2013 Dec; 126():104-14. PubMed ID: 23974076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Outdoor thoron and progeny in a thorium rich area with old decommissioned mines and waste rock.
    Haanes H; Finne IE; Kolstad T; Mauring A; Dahlgren S; Rudjord AL
    J Environ Radioact; 2016 Oct; 162-163():23-32. PubMed ID: 27214284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extremely high radon activity concentration in two adits of the abandoned uranium mine 'Podgórze' in Kowary (Sudety Mts., Poland).
    Fijałkowska-Lichwa L
    J Environ Radioact; 2016 Dec; 165():13-23. PubMed ID: 27573759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excessive radon-based radiation in indoor air caused by soil building materials in traditional homes on Đồng Văn karst plateau, northern Vietnam.
    Nguyễn-Văn H; Nguyễn-Thùy D; Nguyễn NTÁ; Streil T; Schimmelmann JP; Doiron KE; Nguyễn-Đình T; Nguyễn-Thị H; Schimmelmann A
    Chemosphere; 2020 Oct; 257():127119. PubMed ID: 32497835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple two-count method for routine monitoring of 222Rn and 220Rn progeny working levels in U mines.
    Khan A; Phillips CR
    Health Phys; 1986 Mar; 50(3):381-8. PubMed ID: 3949528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of 220Rn and 222Rn progeny levels in Canadian underground U mines.
    Bigu J
    Health Phys; 1988 Sep; 55(3):525-32. PubMed ID: 3170206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RADIOLOGICAL ASSESSMENT OF NATURAL RADIOACTIVITY IN A URANIUM DEPOSIT AREA: KÖPRÜBAŞI, TÜRKIYE.
    Bıyık R; Bingöldağ N; Ataksor B; Duhan F
    Radiat Prot Dosimetry; 2023 Feb; 199(2):134-145. PubMed ID: 36484650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miners' exposure to radon and its decay products in some Iranian non-uranium underground mines.
    Fathabadi N; Ghiassi-Nejad M; Haddadi B; Moradi M
    Radiat Prot Dosimetry; 2006; 118(1):111-6. PubMed ID: 16081493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the dispersion of radon-222 from a landform covered by low uranium grade waste rock.
    Doering C; McMaster SA; Johansen MP
    J Environ Radioact; 2018 Dec; 192():498-504. PubMed ID: 30114620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining a pre-mining radiological baseline from historic airborne gamma surveys: a case study.
    Bollhöfer A; Beraldo A; Pfitzner K; Esparon A; Doering C
    Sci Total Environ; 2014 Jan; 468-469():764-73. PubMed ID: 24076500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.