These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 37257489)
1. Comparison of sleep parameters from wrist-worn ActiGraph and Actiwatch devices. Liu F; Schrack J; Wanigatunga SK; Rabinowitz JA; He L; Wanigatunga AA; Zipunnikov V; Simonsick EM; Ferrucci L; Spira AP Sleep; 2024 Feb; 47(2):. PubMed ID: 37257489 [TBL] [Abstract][Full Text] [Related]
2. The convergent validity of Actiwatch 2 and ActiGraph Link accelerometers in measuring total sleeping period, wake after sleep onset, and sleep efficiency in free-living condition. Lee PH; Suen LK Sleep Breath; 2017 Mar; 21(1):209-215. PubMed ID: 27614441 [TBL] [Abstract][Full Text] [Related]
3. Actigraphy-based sleep estimation in adolescents and adults: a comparison with polysomnography using two scoring algorithms. Quante M; Kaplan ER; Cailler M; Rueschman M; Wang R; Weng J; Taveras EM; Redline S Nat Sci Sleep; 2018; 10():13-20. PubMed ID: 29403321 [TBL] [Abstract][Full Text] [Related]
4. Validation of a physical activity accelerometer device worn on the hip and wrist against polysomnography. Full KM; Kerr J; Grandner MA; Malhotra A; Moran K; Godoble S; Natarajan L; Soler X Sleep Health; 2018 Apr; 4(2):209-216. PubMed ID: 29555136 [TBL] [Abstract][Full Text] [Related]
5. Comparison of multichannel and single-channel wrist-based devices with polysomnography to measure sleep in children and adolescents. Burkart S; Beets MW; Armstrong B; Hunt ET; Dugger R; von Klinggraeff L; Jones A; Brown DE; Weaver RG J Clin Sleep Med; 2021 Apr; 17(4):645-652. PubMed ID: 33174529 [TBL] [Abstract][Full Text] [Related]
6. ActiGraph GT3X+ and Actical Wrist and Hip Worn Accelerometers for Sleep and Wake Indices in Young Children Using an Automated Algorithm: Validation With Polysomnography. Smith C; Galland B; Taylor R; Meredith-Jones K Front Psychiatry; 2019; 10():958. PubMed ID: 31992999 [No Abstract] [Full Text] [Related]
7. Comparison of Commercial Wrist-Based and Smartphone Accelerometers, Actigraphy, and PSG in a Clinical Cohort of Children and Adolescents. Toon E; Davey MJ; Hollis SL; Nixon GM; Horne RS; Biggs SN J Clin Sleep Med; 2016 Mar; 12(3):343-50. PubMed ID: 26446248 [TBL] [Abstract][Full Text] [Related]
8. Validity of activity-based devices to estimate sleep. Weiss AR; Johnson NL; Berger NA; Redline S J Clin Sleep Med; 2010 Aug; 6(4):336-42. PubMed ID: 20726281 [TBL] [Abstract][Full Text] [Related]
9. Utility of actiwatch sleep monitor to assess waking movement behavior in older women. Lambiase MJ; Gabriel KP; Chang YF; Kuller LH; Matthews KA Med Sci Sports Exerc; 2014 Dec; 46(12):2301-7. PubMed ID: 24781894 [TBL] [Abstract][Full Text] [Related]
10. PSG Validation of minute-to-minute scoring for sleep and wake periods in a consumer wearable device. Cheung J; Leary EB; Lu H; Zeitzer JM; Mignot E PLoS One; 2020; 15(9):e0238464. PubMed ID: 32941498 [TBL] [Abstract][Full Text] [Related]
11. Calibration of wrist-worn ActiWatch 2 and ActiGraph wGT3X for assessment of physical activity in young adults. Lee P; Tse CY Gait Posture; 2019 Feb; 68():141-149. PubMed ID: 30476691 [TBL] [Abstract][Full Text] [Related]
12. Validation of actigraphy sleep metrics in children aged 8 to 16 years: considerations for device type, placement and algorithms. Meredith-Jones KA; Haszard JJ; Graham-DeMello A; Campbell A; Stewart T; Galland BC; Cox A; Kennedy G; Duncan S; Taylor RW Int J Behav Nutr Phys Act; 2024 Apr; 21(1):40. PubMed ID: 38627708 [TBL] [Abstract][Full Text] [Related]
14. Comparison of actigraphy and polysomnography to assess effects of zolpidem in a clinical research unit. Peterson BT; Chiao P; Pickering E; Freeman J; Zammit GK; Ding Y; Badura LL Sleep Med; 2012 Apr; 13(4):419-24. PubMed ID: 22317945 [TBL] [Abstract][Full Text] [Related]
15. Validation of an automated sleep detection algorithm using data from multiple accelerometer brands. Plekhanova T; Rowlands AV; Davies MJ; Hall AP; Yates T; Edwardson CL J Sleep Res; 2023 Jun; 32(3):e13760. PubMed ID: 36317222 [TBL] [Abstract][Full Text] [Related]
16. Sleep Measurement Using Wrist-Worn Accelerometer Data Compared with Polysomnography. Chase JD; Busa MA; Staudenmayer JW; Sirard JR Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808535 [TBL] [Abstract][Full Text] [Related]
17. Validation of a Consumer Sleep Wearable Device With Actigraphy and Polysomnography in Adolescents Across Sleep Opportunity Manipulations. Lee XK; Chee NIYN; Ong JL; Teo TB; van Rijn E; Lo JC; Chee MWL J Clin Sleep Med; 2019 Sep; 15(9):1337-1346. PubMed ID: 31538605 [TBL] [Abstract][Full Text] [Related]
18. A comparison of radio-frequency biomotion sensors and actigraphy versus polysomnography for the assessment of sleep in normal subjects. O'Hare E; Flanagan D; Penzel T; Garcia C; Frohberg D; Heneghan C Sleep Breath; 2015 Mar; 19(1):91-8. PubMed ID: 24614968 [TBL] [Abstract][Full Text] [Related]
19. Comparison of 7 versus 14 days wrist actigraphy monitoring in a sleep disorders clinic population. Briscoe S; Hardy E; Pengo MF; Kosky C; Williams AJ; Hart N; Steier J Chronobiol Int; 2014 Apr; 31(3):356-62. PubMed ID: 24304408 [TBL] [Abstract][Full Text] [Related]
20. Comparing GENEActiv against Actiwatch-2 over Seven Nights Using a Common Sleep Scoring Algorithm and Device-Specific Wake Thresholds. Jenkins CA; Tiley LCF; Lay I; Hartmann JA; Chan JKM; Nicholas CL Behav Sleep Med; 2022; 20(4):369-379. PubMed ID: 34096407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]