BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37257655)

  • 21. Predictive modeling of chemical toxicity towards Pseudokirchneriella subcapitata using regression and classification based approaches.
    Pramanik S; Roy K
    Ecotoxicol Environ Saf; 2014 Mar; 101():184-90. PubMed ID: 24507144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. QSTR with extended topochemical atom (ETA) indices. VI. Acute toxicity of benzene derivatives to tadpoles (Rana japonica).
    Roy K; Ghosh G
    J Mol Model; 2006 Feb; 12(3):306-16. PubMed ID: 16249936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ecotoxicological prediction of organic chemicals toward
    Lotfi S; Ahmadi S; Kumar P
    RSC Adv; 2022 Aug; 12(38):24988-24997. PubMed ID: 36199875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative structure-toxicity relationships of organic chemicals against Pseudokirchneriella subcapitata.
    Yu X
    Aquat Toxicol; 2020 Jul; 224():105496. PubMed ID: 32408003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the prediction of cytotoxicity of diverse chemicals for topminnow (Poeciliopsis lucida) hepatoma cell line, PLHC-1
    Kahraman EN; Saçan MT
    SAR QSAR Environ Res; 2018 Sep; 29(9):675-691. PubMed ID: 30220216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. q-RASTR modelling for prediction of diverse toxic chemicals towards
    Ghosh V; Bhattacharjee A; Kumar A; Ojha PK
    SAR QSAR Environ Res; 2024 Jan; 35(1):11-30. PubMed ID: 38193248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational tool for risk assessment of nanomaterials: novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions.
    Kleandrova VV; Luan F; González-Díaz H; Ruso JM; Speck-Planche A; Cordeiro MN
    Environ Sci Technol; 2014 Dec; 48(24):14686-94. PubMed ID: 25384130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals.
    Escher BI; Abagyan R; Embry M; Klüver N; Redman AD; Zarfl C; Parkerton TF
    Environ Toxicol Chem; 2020 Feb; 39(2):269-286. PubMed ID: 31569266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting the acute neurotoxicity of diverse organic solvents using probabilistic neural networks based QSTR modeling approaches.
    Basant N; Gupta S; Singh KP
    Neurotoxicology; 2016 Mar; 53():45-52. PubMed ID: 26721664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the aquatic toxicity of substituted phenols to Chlorella vulgaris: QSTR with an extended novel data set and interspecies models.
    Tugcu G; Ertürk MD; Saçan MT
    J Hazard Mater; 2017 Oct; 339():122-130. PubMed ID: 28641232
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo toxicity of nitroaromatic compounds to rats: QSTR modelling and interspecies toxicity relationship with mouse.
    Hao Y; Sun G; Fan T; Tang X; Zhang J; Liu Y; Zhang N; Zhao L; Zhong R; Peng Y
    J Hazard Mater; 2020 Nov; 399():122981. PubMed ID: 32534390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of concealed structural alerts using QSTR modeling for Pseudokirchneriella subcapitata.
    Masand VH; Zaki MEA; Al-Hussain SA; Ghorbal AB; Akasapu S; Lewaa I; Ghosh A; Jawarkar RD
    Aquat Toxicol; 2021 Oct; 239():105962. PubMed ID: 34525418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling the toxicity of chemical pesticides in multiple test species using local and global QSTR approaches.
    Basant N; Gupta S; Singh KP
    Toxicol Res (Camb); 2016 Jan; 5(1):340-353. PubMed ID: 30090350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlating toxicities of organic compounds to select protozoa using the Abraham model.
    Bowen KR; Flanagan KB; Acree WE; Abraham MH
    Sci Total Environ; 2006 Oct; 369(1-3):109-18. PubMed ID: 16759684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches.
    Singh KP; Gupta S
    Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting Cytotoxicity and Enzymatic Activity of Diverse Chemicals Using Goldfish Scale Tissue and Topminnow Hepatoma Cell Line-based Data.
    Kahraman EN; Saçan MT
    Mol Inform; 2019 Aug; 38(8-9):e1800127. PubMed ID: 30730112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Norm index-based QSTR model to predict the eco-toxicity of ionic liquids towards Leukemia rat cell line.
    Yan F; Lan T; Yan X; Jia Q; Wang Q
    Chemosphere; 2019 Nov; 234():116-122. PubMed ID: 31207417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interspecies quantitative structure-toxicity-toxicity (QSTTR) relationship modeling of ionic liquids. Toxicity of ionic liquids to V. fischeri, D. magna and S. vacuolatus.
    Das RN; Roy K; Popelier PL
    Ecotoxicol Environ Saf; 2015 Dec; 122():497-520. PubMed ID: 26414597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors.
    Kar S; Roy K
    J Hazard Mater; 2010 May; 177(1-3):344-51. PubMed ID: 20045248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches.
    de Morais E Silva L; Alves MF; Scotti L; Lopes WS; Scotti MT
    Ecotoxicol Environ Saf; 2018 May; 153():151-159. PubMed ID: 29427976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.