These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37257655)

  • 41. Exploring QSTR modeling and toxicophore mapping for identification of important molecular features contributing to the chemical toxicity in Escherichia coli.
    Pramanik S; Roy K
    Toxicol In Vitro; 2014 Mar; 28(2):265-72. PubMed ID: 24246193
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides.
    Basant N; Gupta S
    Nanotoxicology; 2017 Apr; 11(3):339-350. PubMed ID: 28277981
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow).
    Papa E; Villa F; Gramatica P
    J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902
    [TBL] [Abstract][Full Text] [Related]  

  • 44. First report on chemometric modeling of tilapia fish aquatic toxicity to organic chemicals: Toxicity data gap filling.
    Yang S; Kar S
    Sci Total Environ; 2024 Jan; 907():167991. PubMed ID: 37898216
    [TBL] [Abstract][Full Text] [Related]  

  • 45. QSTR with extended topochemical atom (ETA) indices. 16. Development of predictive classification and regression models for toxicity of ionic liquids towards Daphnia magna.
    Roy K; Das RN
    J Hazard Mater; 2013 Jun; 254-255():166-178. PubMed ID: 23608063
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Data driven toxicity assessment of organic chemicals against Gammarus species using QSAR approach.
    Yang L; Tian R; Li Z; Ma X; Wang H; Sun W
    Chemosphere; 2023 Jul; 328():138433. PubMed ID: 36963572
    [TBL] [Abstract][Full Text] [Related]  

  • 47. First report on predictive chemometric modeling, 3D-toxicophore mapping and in silico screening of in vitro basal cytotoxicity of diverse organic chemicals.
    Kar S; Roy K
    Toxicol In Vitro; 2013 Mar; 27(2):597-608. PubMed ID: 23481321
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of chemical toxicity to Tetrahymena pyriformis with four-descriptor models.
    Yu X
    Ecotoxicol Environ Saf; 2020 Mar; 190():110146. PubMed ID: 31923753
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In silico prediction of toxicity of phenols to Tetrahymena pyriformis by using genetic algorithm and decision tree-based modeling approach.
    Abbasitabar F; Zare-Shahabadi V
    Chemosphere; 2017 Apr; 172():249-259. PubMed ID: 28081509
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Safer and greener chemicals for the aquatic ecosystem: Chemometric modeling of the prolonged and chronic aquatic toxicity of chemicals on Oryzias latipes.
    Kumar A; Ojha PK; Roy K
    Aquat Toxicol; 2024 Jun; 273():106985. PubMed ID: 38875952
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect.
    Kleandrova VV; Luan F; Speck-Planche A; Cordeiro MN
    Mini Rev Med Chem; 2015; 15(8):677-86. PubMed ID: 25694074
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity.
    Sangion A; Gramatica P
    Environ Int; 2016 Oct; 95():131-43. PubMed ID: 27568576
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of reliable quantitative structure-toxicity relationship models for toxicity prediction of benzene derivatives using semiempirical descriptors.
    Singh A; Kumar S; Kapoor A; Kumar P; Kumar A
    Toxicol Mech Methods; 2023 Mar; 33(3):222-232. PubMed ID: 36042574
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling and mechanistic understanding of cytotoxicity of metal oxide nanoparticles (MeOxNPs) to
    Roy J; Roy K
    Nanotoxicology; 2022 Mar; 16(2):152-164. PubMed ID: 35166631
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ecotoxicological modelling of cosmetics for aquatic organisms: A QSTR approach.
    Khan K; Roy K
    SAR QSAR Environ Res; 2017 Jul; 28(7):567-594. PubMed ID: 28780892
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative structure-toxicity relationship (QSTR) studies on the organophosphate insecticides.
    Can A
    Toxicol Lett; 2014 Nov; 230(3):434-43. PubMed ID: 25149906
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting the ecotoxicity of endocrine disruptive chemicals: Multitasking in silico approaches towards global models.
    Halder AK; Moura AS; Cordeiro MNDS
    Sci Total Environ; 2023 Sep; 889():164337. PubMed ID: 37211130
    [TBL] [Abstract][Full Text] [Related]  

  • 58. First report on soil ecotoxicity prediction against Folsomia candida using intelligent consensus predictions and chemical read-across.
    Paul R; Chatterjee M; Roy K
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):88302-88317. PubMed ID: 35829883
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploring QSPR modeling for adsorption of hazardous synthetic organic chemicals (SOCs) by SWCNTs.
    Ghosh S; Ojha PK; Roy K
    Chemosphere; 2019 Aug; 228():545-555. PubMed ID: 31051358
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantitative structure-activity relationship analysis of acute toxicity of diverse chemicals to Daphnia magna with whole molecule descriptors.
    Moosus M; Maran U
    SAR QSAR Environ Res; 2011 Oct; 22(7-8):757-74. PubMed ID: 21999753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.