These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37257754)

  • 41. Executive inhibition and semantic association in schizophrenia.
    Leeson VC; Simpson A; McKenna PJ; Laws KR
    Schizophr Res; 2005 Apr; 74(1):61-7. PubMed ID: 15694755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Referential noun phrases distribute differently in Turkish speakers with schizophrenia.
    Çokal D; Palominos-Flores C; Yalınçetin B; Türe-Abacı Ö; Bora E; Hinzen W
    Schizophr Res; 2023 Sep; 259():104-110. PubMed ID: 35871970
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Language comprehension and neurocognition independently and concurrently contribute to formal thought disorder severity in schizophrenia.
    Tan EJ; Rossell SL
    Schizophr Res; 2019 Feb; 204():133-137. PubMed ID: 30126817
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trajectories through semantic spaces in schizophrenia and the relationship to ripple bursts.
    Nour MM; McNamee DC; Liu Y; Dolan RJ
    Proc Natl Acad Sci U S A; 2023 Oct; 120(42):e2305290120. PubMed ID: 37816054
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Disordered semantic activation in disorganized discourse in schizophrenia: a new pragma-linguistic tool for structure and meaning reconstruction.
    Hella P; Niemi J; Hintikka J; Otsa L; Tirkkonen JM; Koponen H
    Int J Lang Commun Disord; 2013; 48(3):320-8. PubMed ID: 23650888
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Frequency-based Strategy of Obtaining Sentences from Clinical Data Repository for Crowdsourcing.
    Li D; Rastegar Mojarad M; Li Y; Sohn S; Mehrabi S; Komandur Elayavilli R; Yu Y; Liu H
    Stud Health Technol Inform; 2015; 216():1033-4. PubMed ID: 26262333
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neurocognitive and linguistic correlates of positive and negative formal thought disorder: A meta-analysis.
    Bora E; Yalincetin B; Akdede BB; Alptekin K
    Schizophr Res; 2019 Jul; 209():2-11. PubMed ID: 31153670
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigating the Efficient Use of Word Embedding with Neural-Topic Models for Interpretable Topics from Short Texts.
    Murakami R; Chakraborty B
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploring language and cognition in schizophrenia: Insights from computational analysis.
    Cecchi GA; Corcoran CM
    Schizophr Res; 2023 Sep; 259():1-3. PubMed ID: 37553268
    [No Abstract]   [Full Text] [Related]  

  • 50. Delta-band neural activity primarily tracks sentences instead of semantic properties of words.
    Lu Y; Jin P; Pan X; Ding N
    Neuroimage; 2022 May; 251():118979. PubMed ID: 35143977
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Making sense of sentences in schizophrenia: electrophysiological evidence for abnormal interactions between semantic and syntactic processing.
    Kuperberg GR; Sitnikova T; Goff D; Holcomb PJ
    J Abnorm Psychol; 2006 May; 115(2):251-65. PubMed ID: 16737390
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Verbatim recall in formal thought disorder in schizophrenia: a study of contextual influences.
    Dwyer K; Peters E; McKenna P; David A; McCarthy R
    Cogn Neuropsychiatry; 2014; 19(4):337-58. PubMed ID: 24410090
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Applying semantic-based probabilistic context-free grammar to medical language processing--a preliminary study on parsing medication sentences.
    Xu H; AbdelRahman S; Lu Y; Denny JC; Doan S
    J Biomed Inform; 2011 Dec; 44(6):1068-75. PubMed ID: 21856440
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neural correlates of word representation vectors in natural language processing models: Evidence from representational similarity analysis of event-related brain potentials.
    He T; Boudewyn MA; Kiat JE; Sagae K; Luck SJ
    Psychophysiology; 2022 Mar; 59(3):e13976. PubMed ID: 34817867
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Higher-order semantic processing in formal thought disorder in schizophrenia.
    Dwyer K; David A; McCarthy R; McKenna P; Peters E
    Psychiatry Res; 2014 May; 216(2):168-76. PubMed ID: 24594202
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cognitive substrates of thought disorder, II: specifying a candidate cognitive mechanism.
    Aloia MS; Gourovitch ML; Missar D; Pickar D; Weinberger DR; Goldberg TE
    Am J Psychiatry; 1998 Dec; 155(12):1677-84. PubMed ID: 9842775
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identifying clinical phenotypes of frontotemporal dementia in post-9/11 era veterans using natural language processing.
    Panahi S; Mayo J; Kennedy E; Christensen L; Kamineni S; Sagiraju HKR; Cooper T; Tate DF; Rupper R; Pugh MJ
    Front Neurol; 2024; 15():1270688. PubMed ID: 38426171
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sensitivity to linguistic anomalies in spoken sentences: a case study approach to understanding thought disorder in schizophrenia.
    Kuperberg GR; McGuire PK; David AS
    Psychol Med; 2000 Mar; 30(2):345-57. PubMed ID: 10824655
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Building meaning in schizophrenia.
    Kuperberg GR
    Clin EEG Neurosci; 2008 Apr; 39(2):99-102. PubMed ID: 18450178
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window.
    Wang B; Fei T; Kang Y; Li M; Du Q; Han M; Dong N
    PLoS One; 2020; 15(7):e0236347. PubMed ID: 32702022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.