BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37258056)

  • 21. The Olfactory Logic behind Fruit Odor Preferences in Larval and Adult Drosophila.
    Dweck HKM; Ebrahim SAM; Retzke T; Grabe V; Weißflog J; Svatoš A; Hansson BS; Knaden M
    Cell Rep; 2018 May; 23(8):2524-2531. PubMed ID: 29791860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensory determinants of behavioral dynamics in Drosophila thermotaxis.
    Klein M; Afonso B; Vonner AJ; Hernandez-Nunez L; Berck M; Tabone CJ; Kane EA; Pieribone VA; Nitabach MN; Cardona A; Zlatic M; Sprecher SG; Gershow M; Garrity PA; Samuel AD
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):E220-9. PubMed ID: 25550513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prior activity of olfactory receptor neurons is required for proper sensory processing and behavior in Drosophila larvae.
    Utashiro N; Williams CR; Parrish JZ; Emoto K
    Sci Rep; 2018 Jun; 8(1):8580. PubMed ID: 29872087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Innate visual preferences and behavioral flexibility in
    Grabowska MJ; Steeves J; Alpay J; Van De Poll M; Ertekin D; van Swinderen B
    J Exp Biol; 2018 Dec; 221(Pt 23):. PubMed ID: 30322983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensorimotor pathway controlling stopping behavior during chemotaxis in the
    Tastekin I; Khandelwal A; Tadres D; Fessner ND; Truman JW; Zlatic M; Cardona A; Louis M
    Elife; 2018 Nov; 7():. PubMed ID: 30465650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Internal state affects local neuron function in an early sensory processing center to shape olfactory behavior in Drosophila larvae.
    Odell SR; Clark D; Zito N; Jain R; Gong H; Warnock K; Carrion-Lopez R; Maixner C; Prieto-Godino L; Mathew D
    Sci Rep; 2022 Sep; 12(1):15767. PubMed ID: 36131078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tracking Drosophila Larval Behavior in Response to Optogenetic Stimulation of Olfactory Neurons.
    Clark DA; Kohler D; Mathis A; Slankster E; Kafle S; Odell SR; Mathew D
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29630041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The neuro-ecology of Drosophila pupation behavior.
    Del Pino F; Jara C; Pino L; Godoy-Herrera R
    PLoS One; 2014; 9(7):e102159. PubMed ID: 25033294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensing complementary temporal features of odor signals enhances navigation of diverse turbulent plumes.
    Jayaram V; Kadakia N; Emonet T
    Elife; 2022 Jan; 11():. PubMed ID: 35072625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlling the behaviour of Drosophila melanogaster via smartphone optogenetics.
    Meloni I; Sachidanandan D; Thum AS; Kittel RJ; Murawski C
    Sci Rep; 2020 Oct; 10(1):17614. PubMed ID: 33077824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potency of transgenic effectors for neurogenetic manipulation in Drosophila larvae.
    Pauls D; von Essen A; Lyutova R; van Giesen L; Rosner R; Wegener C; Sprecher SG
    Genetics; 2015 Jan; 199(1):25-37. PubMed ID: 25359929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. History dependence in insect flight decisions during odor tracking.
    Pang R; van Breugel F; Dickinson M; Riffell JA; Fairhall A
    PLoS Comput Biol; 2018 Feb; 14(2):e1005969. PubMed ID: 29432454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multisensory-motor integration in olfactory navigation of silkmoth,
    Yamada M; Ohashi H; Hosoda K; Kurabayashi D; Shigaki S
    Elife; 2021 Nov; 10():. PubMed ID: 34822323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.
    Huser A; Rohwedder A; Apostolopoulou AA; Widmann A; Pfitzenmaier JE; Maiolo EM; Selcho M; Pauls D; von Essen A; Gupta T; Sprecher SG; Birman S; Riemensperger T; Stocker RF; Thum AS
    PLoS One; 2012; 7(10):e47518. PubMed ID: 23082175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in
    Wang Q; Fan H; Li F; Skeeters SS; Krishnamurthy VV; Song Y; Zhang K
    Elife; 2020 Oct; 9():. PubMed ID: 33021199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ethanol-guided behavior in Drosophila larvae.
    Schumann I; Berger M; Nowag N; Schäfer Y; Saumweber J; Scholz H; Thum AS
    Sci Rep; 2021 Jun; 11(1):12307. PubMed ID: 34112872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visually Guided Behavior and Optogenetically Induced Learning in Head-Fixed Flies Exploring a Virtual Landscape.
    Haberkern H; Basnak MA; Ahanonu B; Schauder D; Cohen JD; Bolstad M; Bruns C; Jayaraman V
    Curr Biol; 2019 May; 29(10):1647-1659.e8. PubMed ID: 31056392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Closed-Loop Behavioral Control Increases Coherence in the Fly Brain.
    Paulk AC; Kirszenblat L; Zhou Y; van Swinderen B
    J Neurosci; 2015 Jul; 35(28):10304-15. PubMed ID: 26180205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oscillations in the central brain of
    Grabowska MJ; Jeans R; Steeves J; van Swinderen B
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29925-29936. PubMed ID: 33177231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.