These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37258538)

  • 1. Design and evaluation of a skin-on-a-chip pumpless microfluidic device.
    Mohamadali M; Ghiaseddin A; Irani S; Amirkhani MA; Dahmardehei M
    Sci Rep; 2023 May; 13(1):8861. PubMed ID: 37258538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing the Effectiveness of
    Kim K; Jeon HM; Choi KC; Sung GY
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of 3D multicellular microfluidic chip for an in vitro skin model.
    Lee S; Jin SP; Kim YK; Sung GY; Chung JH; Sung JH
    Biomed Microdevices; 2017 Jun; 19(2):22. PubMed ID: 28374277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of α-Lipoic Acid on the Development of Human Skin Equivalents Using a Pumpless Skin-on-a-Chip Model.
    Kim K; Kim J; Kim H; Sung GY
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33671528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a high fidelity epidermis-on-a-chip for scalable
    Zhang J; Chen Z; Zhang Y; Wang X; Ouyang J; Zhu J; Yan Y; Sun X; Wang F; Li X; Ye H; Sun S; Yu Q; Sun J; Ge J; Li Q; Han Q; Pu Y; Gu Z
    Lab Chip; 2021 Sep; 21(19):3804-3818. PubMed ID: 34581381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unlocking the Potential of Organ-on-Chip Models through Pumpless and Tubeless Microfluidics.
    Delon LC; Nilghaz A; Cheah E; Prestidge C; Thierry B
    Adv Healthc Mater; 2020 Jun; 9(11):e1901784. PubMed ID: 32342669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and Use of a Pumpless Microfluidic Lymphatic Vessel Chip.
    Fathi P; Esch MB
    Methods Mol Biol; 2022; 2373():177-199. PubMed ID: 34520013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of an Integrated Microvascularized Human Skin-on-a-Chip Tissue Equivalent Model.
    Jones CFE; Di Cio S; Connelly JT; Gautrot JE
    Front Bioeng Biotechnol; 2022; 10():915702. PubMed ID: 35928950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new microfluidic model that allows monitoring of complex vascular structures and cell interactions in a 3D biological matrix.
    van Dijk CGM; Brandt MM; Poulis N; Anten J; van der Moolen M; Kramer L; Homburg EFGA; Louzao-Martinez L; Pei J; Krebber MM; van Balkom BWM; de Graaf P; Duncker DJ; Verhaar MC; Luttge R; Cheng C
    Lab Chip; 2020 May; 20(10):1827-1844. PubMed ID: 32330215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro/nanofluidic devices for drug delivery.
    Kashaninejad N; Moradi E; Moghadas H
    Prog Mol Biol Transl Sci; 2022; 187(1):9-39. PubMed ID: 35094782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic skin chip with vasculature for recapitulating the immune response of the skin tissue.
    Kwak BS; Jin SP; Kim SJ; Kim EJ; Chung JH; Sung JH
    Biotechnol Bioeng; 2020 Jun; 117(6):1853-1863. PubMed ID: 32100875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coenzyme Q10 Efficacy Test for Human Skin Equivalents Using a Pumpless Skin-On-A-Chip System.
    Kim J; Kim K; Sung GY
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33187177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Organ-on-a-Chip System for Disease Modeling and Drug Development.
    Li Z; Hui J; Yang P; Mao H
    Biosensors (Basel); 2022 May; 12(6):. PubMed ID: 35735518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Chip for Applying Mechanical Forces on Human Skin Models Under Dynamic Culture Conditions.
    Kaiser K; Sørensen JA; Brewer JR
    Tissue Eng Part C Methods; 2024 Feb; 30(2):85-91. PubMed ID: 37950718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Procedure for the development of multi-depth circular cross-sectional endothelialized microchannels-on-a-chip.
    Li X; Mearns SM; Martins-Green M; Liu Y
    J Vis Exp; 2013 Oct; (80):e50771. PubMed ID: 24193102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Lung Small Airway-on-a-Chip Protocol.
    Benam KH; Mazur M; Choe Y; Ferrante TC; Novak R; Ingber DE
    Methods Mol Biol; 2017; 1612():345-365. PubMed ID: 28634955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Next generation human skin constructs as advanced tools for drug development.
    Abaci HE; Guo Z; Doucet Y; Jacków J; Christiano A
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1657-1668. PubMed ID: 28592171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Microfluidic Array to Study Drug Response in Breast Cancer.
    Virumbrales-Muñoz M; Livingston MK; Farooqui M; Skala MC; Beebe DJ; Ayuso JM
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31801265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.