These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37258627)

  • 1. A fast methodology for generating skeletal FEM with detailed human geometric features based on CPD and RBF algorithms.
    Yuan Q; Jiang B; Zhu X; Hu J; Wang Y; Chou CC; Xu S
    Sci Rep; 2023 May; 13(1):8864. PubMed ID: 37258627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a semi-automatic landmark extraction method for mesh morphing.
    Wu J; Cai M; Li J; Cao L; Xu L; Li N; Hu J
    Med Eng Phys; 2019 Aug; 70():62-71. PubMed ID: 31229385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesh-morphing algorithms for specimen-specific finite element modeling.
    Sigal IA; Hardisty MR; Whyne CM
    J Biomech; 2008; 41(7):1381-9. PubMed ID: 18397789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A semi-automatic method of generating subject-specific pediatric head finite element models for impact dynamic responses to head injury.
    Li Z; Han X; Ge H; Ma C
    J Mech Behav Biomed Mater; 2016 Jul; 60():557-567. PubMed ID: 27058003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel biomedical meshing algorithm and evaluation based on revised Delaunay and Space Disassembling.
    Yu X; Gu L; Lv S; Liu J; Huang P; Kong X
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5091-4. PubMed ID: 18003151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-based variational meshing.
    Goksel O; Salcudean SE
    IEEE Trans Med Imaging; 2011 Jan; 30(1):11-21. PubMed ID: 20601308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast and robust patient specific Finite Element mesh registration technique: application to 60 clinical cases.
    Bucki M; Lobos C; Payan Y
    Med Image Anal; 2010 Jun; 14(3):303-17. PubMed ID: 20299273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.
    Grassi L; Hraiech N; Schileo E; Ansaloni M; Rochette M; Viceconti M
    Med Eng Phys; 2011 Jan; 33(1):112-20. PubMed ID: 21036655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A finite element method to correct deformable image registration errors in low-contrast regions.
    Zhong H; Kim J; Li H; Nurushev T; Movsas B; Chetty IJ
    Phys Med Biol; 2012 Jun; 57(11):3499-515. PubMed ID: 22581269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element model of human cervical spinal column.
    Wheeldon J; Khouphongsy P; Kumaresan S; Yoganandan N; Pintar FA
    Biomed Sci Instrum; 2000; 36():337-42. PubMed ID: 10834255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smoothed finite element methods in simulation of active contraction of myocardial tissue samples.
    Martonová D; Holz D; Duong MT; Leyendecker S
    J Biomech; 2023 Aug; 157():111691. PubMed ID: 37441914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study.
    Mohammadi A; Ahmadian A; Azar AD; Sheykh AD; Amiri F; Alirezaie J
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1753-64. PubMed ID: 25958061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.
    Salo Z; Beek M; Whyne CM
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):904-13. PubMed ID: 25099570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.
    Salo Z; Beek M; Wright D; Whyne CM
    J Biomech; 2015 Apr; 48(6):1125-32. PubMed ID: 25680299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development, Evaluation, and Sensitivity Analysis of Parametric Finite Element Whole-Body Human Models in Side Impacts.
    Hwang E; Hu J; Chen C; Klein KF; Miller CS; Reed MP; Rupp JD; Hallman JJ
    Stapp Car Crash J; 2016 Nov; 60():473-508. PubMed ID: 27871104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm.
    O'Reilly MA; Whyne CM
    Spine (Phila Pa 1976); 2008 Aug; 33(17):1876-81. PubMed ID: 18670341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards the simulation of active cardiac mechanics using a smoothed finite element method.
    Martonová D; Holz D; Duong MT; Leyendecker S
    J Biomech; 2021 Jan; 115():110153. PubMed ID: 33388486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A universal algorithm for an improved finite element mesh generation Mesh quality assessment in comparison to former automated mesh-generators and an analytic model.
    Kaminsky J; Rodt T; Gharabaghi A; Forster J; Brand G; Samii M
    Med Eng Phys; 2005 Jun; 27(5):383-94. PubMed ID: 15863347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adaptive MR-CT registration method for MRI-guided prostate cancer radiotherapy.
    Zhong H; Wen N; Gordon JJ; Elshaikh MA; Movsas B; Chetty IJ
    Phys Med Biol; 2015 Apr; 60(7):2837-51. PubMed ID: 25775937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Radial Basis Function Methods in the Development of a 95th Percentile Male Seated FEA Model.
    Vavalle NA; Schoell SL; Weaver AA; Stitzel JD; Gayzik FS
    Stapp Car Crash J; 2014 Nov; 58():361-84. PubMed ID: 26192960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.