BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37258767)

  • 1. Measuring the Oxidation State and Enzymatic Activity of Glyceraldehyde Phosphate Dehydrogenase (GAPDH).
    Montllor-Albalate C; Thompson AE; Kim H; Reddi AR
    Methods Mol Biol; 2023; 2675():219-236. PubMed ID: 37258767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of the active site cysteine residue of glyceraldehyde-3-phosphate dehydrogenase to the hyper-oxidized sulfonic acid form is favored under crowded conditions.
    Glover MR; Davies MJ; Fuentes-Lemus E
    Free Radic Biol Med; 2024 Feb; 212():1-9. PubMed ID: 38122871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon dioxide/bicarbonate is required for sensitive inactivation of mammalian glyceraldehyde-3-phosphate dehydrogenase by hydrogen peroxide.
    Winterbourn CC; Peskin AV; Kleffmann T; Radi R; Pace PE
    Proc Natl Acad Sci U S A; 2023 May; 120(18):e2221047120. PubMed ID: 37098065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol-based regulation of glyceraldehyde-3-phosphate dehydrogenase in blood bank-stored red blood cells: a strategy to counteract oxidative stress.
    Rinalducci S; Marrocco C; Zolla L
    Transfusion; 2015 Mar; 55(3):499-506. PubMed ID: 25196942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation.
    Zaffagnini M; Michelet L; Marchand C; Sparla F; Decottignies P; Le Maréchal P; Miginiac-Maslow M; Noctor G; Trost P; Lemaire SD
    FEBS J; 2007 Jan; 274(1):212-26. PubMed ID: 17140414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Oxidative Stress on Catalytic and Non-glycolytic Functions of Glyceraldehyde-3-phosphate Dehydrogenase.
    Muronetz VI; Melnikova AK; Saso L; Schmalhausen EV
    Curr Med Chem; 2020; 27(13):2040-2058. PubMed ID: 29848267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The biological significance of oxidative modifications of cysteine residues in proteins illustrated with the example of glyceraldehyde-3-phosphate dehydrogenase].
    Rodacka A; Gerszon J; Puchała M
    Postepy Hig Med Dosw (Online); 2014 Mar; 68():280-90. PubMed ID: 24662796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and mechanistic characterization of the glyceraldehyde 3-phosphate dehydrogenase from Mycobacterium tuberculosis.
    Wolfson-Stofko B; Hadi T; Blanchard JS
    Arch Biochem Biophys; 2013 Dec; 540(1-2):53-61. PubMed ID: 24161676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub?
    Hildebrandt T; Knuesting J; Berndt C; Morgan B; Scheibe R
    Biol Chem; 2015 May; 396(5):523-37. PubMed ID: 25581756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acceleration of glycolysis in the presence of the non-phosphorylating and the oxidized phosphorylating glyceraldehyde-3-phosphate dehydrogenases.
    Dan'shina PV; Schmalhausen EV; Arutiunov DY; Pleten' AP; Muronetz VI
    Biochemistry (Mosc); 2003 May; 68(5):593-600. PubMed ID: 12882642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mildly oxidized glyceraldehyde-3-phosphate dehydrogenase as a possible regulator of glycolysis.
    Danshina PV; Schmalhausen EV; Avetisyan AV; Muronetz VI
    IUBMB Life; 2001 May; 51(5):309-14. PubMed ID: 11699877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative enzymatic properties of GapB-encoded erythrose-4-phosphate dehydrogenase of Escherichia coli and phosphorylating glyceraldehyde-3-phosphate dehydrogenase.
    Boschi-Muller S; Azza S; Pollastro D; Corbier C; Branlant G
    J Biol Chem; 1997 Jun; 272(24):15106-12. PubMed ID: 9182530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The GAPDH redox switch safeguards reductive capacity and enables survival of stressed tumour cells.
    Talwar D; Miller CG; Grossmann J; Szyrwiel L; Schwecke T; Demichev V; Mikecin Drazic AM; Mayakonda A; Lutsik P; Veith C; Milsom MD; Müller-Decker K; Mülleder M; Ralser M; Dick TP
    Nat Metab; 2023 Apr; 5(4):660-676. PubMed ID: 37024754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glyceraldehyde-3-phosphate dehydrogenase is largely unresponsive to low regulatory levels of hydrogen peroxide in Saccharomyces cerevisiae.
    Cyrne L; Antunes F; Sousa-Lopes A; Diaz-Bérrio J; Marinho HS
    BMC Biochem; 2010 Dec; 11():49. PubMed ID: 21189144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of alpha-synuclein to partially oxidized glyceraldehyde-3-phosphate dehydrogenase induces subsequent inactivation of the enzyme.
    Barinova K; Khomyakova E; Semenyuk P; Schmalhausen E; Muronetz V
    Arch Biochem Biophys; 2018 Mar; 642():10-22. PubMed ID: 29408361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical role of sulfenic acid formation of thiols in the inactivation of glyceraldehyde-3-phosphate dehydrogenase by nitric oxide.
    Ishii T; Sunami O; Nakajima H; Nishio H; Takeuchi T; Hata F
    Biochem Pharmacol; 1999 Jul; 58(1):133-43. PubMed ID: 10403526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions.
    Hwang NR; Yim SH; Kim YM; Jeong J; Song EJ; Lee Y; Lee JH; Choi S; Lee KJ
    Biochem J; 2009 Sep; 423(2):253-64. PubMed ID: 19650766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase works as an arsenate reductase in human red blood cells and rat liver cytosol.
    Gregus Z; Németi B
    Toxicol Sci; 2005 Jun; 85(2):859-69. PubMed ID: 15788719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rabbit muscle GAPDH: non-phosphorylating dehydrogenase activity induced by hydrogen peroxide.
    Schmalhausen EV; Muronetz VI; Nagradova NK
    FEBS Lett; 1997 Sep; 414(2):247-52. PubMed ID: 9315695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The glyceraldehyde-3-phosphate dehydrogenase GapDH of Corynebacterium diphtheriae is redox-controlled by protein S-mycothiolation under oxidative stress.
    Hillion M; Imber M; Pedre B; Bernhardt J; Saleh M; Loi VV; Maaß S; Becher D; Astolfi Rosado L; Adrian L; Weise C; Hell R; Wirtz M; Messens J; Antelmann H
    Sci Rep; 2017 Jul; 7(1):5020. PubMed ID: 28694441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.