These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 37259992)
1. Computing vibrational energy levels using a canonical polyadic tensor method with a fixed rank and a contraction tree. Kallullathil SD; Carrington T J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37259992 [TBL] [Abstract][Full Text] [Related]
2. Computing vibrational energy levels by solving linear equations using a tensor method with an imposed rank. Kallullathil SD; Carrington T J Chem Phys; 2021 Dec; 155(23):234105. PubMed ID: 34937358 [TBL] [Abstract][Full Text] [Related]
3. Using Nested Contractions and a Hierarchical Tensor Format To Compute Vibrational Spectra of Molecules with Seven Atoms. Thomas PS; Carrington T J Phys Chem A; 2015 Dec; 119(52):13074-91. PubMed ID: 26555177 [TBL] [Abstract][Full Text] [Related]
4. An intertwined method for making low-rank, sum-of-product basis functions that makes it possible to compute vibrational spectra of molecules with more than 10 atoms. Thomas PS; Carrington T J Chem Phys; 2017 May; 146(20):204110. PubMed ID: 28571348 [TBL] [Abstract][Full Text] [Related]
5. Using an iterative eigensolver and intertwined rank reduction to compute vibrational spectra of molecules with more than a dozen atoms: Uracil and naphthalene. Thomas PS; Carrington T; Agarwal J; Schaefer HF J Chem Phys; 2018 Aug; 149(6):064108. PubMed ID: 30111157 [TBL] [Abstract][Full Text] [Related]
7. A multi-dimensional Smolyak collocation method in curvilinear coordinates for computing vibrational spectra. Avila G; Carrington T J Chem Phys; 2015 Dec; 143(21):214108. PubMed ID: 26646870 [TBL] [Abstract][Full Text] [Related]
8. Calculating vibrational spectra with sum of product basis functions without storing full-dimensional vectors or matrices. Leclerc A; Carrington T J Chem Phys; 2014 May; 140(17):174111. PubMed ID: 24811629 [TBL] [Abstract][Full Text] [Related]
9. Reducing the cost of using collocation to compute vibrational energy levels: Results for CH Avila G; Carrington T J Chem Phys; 2017 Aug; 147(6):064103. PubMed ID: 28810786 [TBL] [Abstract][Full Text] [Related]
10. Compact sum-of-products form of the molecular electronic Hamiltonian based on canonical polyadic decomposition. Sasmal S; Schröder M; Vendrell O J Chem Phys; 2024 Feb; 160(6):. PubMed ID: 38345112 [TBL] [Abstract][Full Text] [Related]
11. Tensor representation techniques for full configuration interaction: A Fock space approach using the canonical product format. Böhm KH; Auer AA; Espig M J Chem Phys; 2016 Jun; 144(24):244102. PubMed ID: 27369492 [TBL] [Abstract][Full Text] [Related]
12. Computing energy levels of CH Zhao Z; Chen J; Zhang Z; Zhang DH; Wang XG; Carrington T; Gatti F J Chem Phys; 2018 Feb; 148(7):074113. PubMed ID: 29471646 [TBL] [Abstract][Full Text] [Related]
13. Machine learning with tree tensor networks, CP rank constraints, and tensor dropout. Chen H; Barthel T IEEE Trans Pattern Anal Mach Intell; 2024 May; PP():. PubMed ID: 38696289 [TBL] [Abstract][Full Text] [Related]
14. Efficient Construction of Canonical Polyadic Approximations of Tensor Networks. Pierce K; Valeev EF J Chem Theory Comput; 2023 Jan; 19(1):71-81. PubMed ID: 36484711 [TBL] [Abstract][Full Text] [Related]
15. Calculating vibrational spectra of molecules using tensor train decomposition. Rakhuba M; Oseledets I J Chem Phys; 2016 Sep; 145(12):124101. PubMed ID: 27782616 [TBL] [Abstract][Full Text] [Related]
16. Parameterized Bases for Calculating Vibrational Spectra Directly from ab Initio Data Using Rectangular Collocation. Chan M; Manzhos S; Carrington T; Yamashita K J Chem Theory Comput; 2012 Jun; 8(6):2053-61. PubMed ID: 26593837 [TBL] [Abstract][Full Text] [Related]
17. Toward breaking the curse of dimensionality in (ro)vibrational computations of molecular systems with multiple large-amplitude motions. Avila G; Mátyus E J Chem Phys; 2019 May; 150(17):174107. PubMed ID: 31067897 [TBL] [Abstract][Full Text] [Related]
19. Transforming high-dimensional potential energy surfaces into a canonical polyadic decomposition using Monte Carlo methods. Schröder M J Chem Phys; 2020 Jan; 152(2):024108. PubMed ID: 31941296 [TBL] [Abstract][Full Text] [Related]