These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37260011)

  • 1. Mapping fluid structuration to flow enhancement in nanofluidic channels.
    Agarwal A; Arya V; Golani B; Bakli C; Chakraborty S
    J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37260011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upstream events dictate interfacial slip in geometrically converging nanopores.
    Mondal N; Chaudhuri A; Bakli C; Chakraborty S
    J Chem Phys; 2021 Apr; 154(16):164709. PubMed ID: 33940837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unified slip boundary condition for fluid flows.
    Thalakkottor JJ; Mohseni K
    Phys Rev E; 2016 Aug; 94(2-1):023113. PubMed ID: 27627398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetic energy conversion in nanofluidic channels: addressing the loose ends in nanodevice efficiency.
    Bakli C; Chakraborty S
    Electrophoresis; 2015 Mar; 36(5):675-81. PubMed ID: 25258090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport Phenomena of Water in Molecular Fluidic Channels.
    Vo TQ; Kim B
    Sci Rep; 2016 Sep; 6():33881. PubMed ID: 27650138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corrected second-order slip boundary condition for fluid flows in nanochannels.
    Zhang H; Zhang Z; Zheng Y; Ye H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066303. PubMed ID: 20866518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion-Slip Boundary Conditions for Isothermal Flows in Micro- and Nano-Channels.
    Tomy AM; Dadzie SK
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011606. PubMed ID: 20365383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular wall effects: are conditions at a boundary "boundary conditions"?
    Brenner H; Ganesan V
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt B):6879-97. PubMed ID: 11088381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenomenological model of propagation of the elastic waves in a fluid-saturated porous solid with nonzero boundary slip velocity.
    Tsiklauri D
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):843-9. PubMed ID: 12243170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physics-constrained intraventricular vector flow mapping by color Doppler.
    Vixège F; Berod A; Sun Y; Mendez S; Bernard O; Ducros N; Courand PY; Nicoud F; Garcia D
    Phys Med Biol; 2021 Dec; 66(24):. PubMed ID: 34874296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2012 Jan; 136(2):024705. PubMed ID: 22260608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slip divergence of water flow in graphene nanochannels: the role of chirality.
    Wagemann E; Oyarzua E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2017 Mar; 19(13):8646-8652. PubMed ID: 28195288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Solid Wall Properties in the Interface Slip of Liquid in Nanochannels.
    Gao W; Zhang X; Han X; Shen C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30558345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-Solid Interfaces under Dynamic Shear Flow: Recent Insights into the Interfacial Slip.
    Luo Y; Pang AP; Lu X
    Langmuir; 2022 Apr; 38(15):4473-4482. PubMed ID: 35377658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slip-enhanced electrokinetic energy conversion in nanofluidic channels.
    Ren Y; Stein D
    Nanotechnology; 2008 May; 19(19):195707. PubMed ID: 21825725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.