These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37260011)

  • 21. Shear force measurement of the hydrodynamic wall position in molecular dynamics.
    Herrero C; Omori T; Yamaguchi Y; Joly L
    J Chem Phys; 2019 Jul; 151(4):041103. PubMed ID: 31370549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beyond the no-slip boundary condition.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046309. PubMed ID: 22181263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anomalous interplay of slip, shear and wettability in nanoconfined water.
    Bakli C; Chakraborty S
    Nanoscale; 2019 Jun; 11(23):11254-11261. PubMed ID: 31162505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boundary conditions for fluids with internal orientational degrees of freedom: apparent velocity slip associated with the molecular alignment.
    Heidenreich S; Ilg P; Hess S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066302. PubMed ID: 17677352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interfacial slip on rough, patterned and soft surfaces: a review of experiments and simulations.
    Lee T; Charrault E; Neto C
    Adv Colloid Interface Sci; 2014 Aug; 210():21-38. PubMed ID: 24630344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of complex boundary on the hydrodynamic properties of methane nanofluidic flow via non-equilibrium multiscale molecular dynamics simulation.
    Jiang C; Li W; Liu Q
    Sci Rep; 2022 Jun; 12(1):11072. PubMed ID: 35773348
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-Dimensional Simulations of Anisotropic Slip Microflows Using the Discrete Unified Gas Kinetic Scheme.
    Guo W; Hou G
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A theory for the slip and drag of superhydrophobic surfaces with surfactant.
    Landel JR; Peaudecerf FJ; Temprano-Coleto F; Gibou F; Goldstein RE; Luzzatto-Fegiz P
    J Fluid Mech; 2020 Jan; 883():. PubMed ID: 31806916
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pressure-dependent flow enhancement in carbon nanotubes.
    Li H; Ge Z; Aminpour M; Wen L; Galindo-Torres SA
    J Chem Phys; 2024 Feb; 160(5):. PubMed ID: 38341689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Slip-flow boundary condition for straight walls in the lattice Boltzmann model.
    Szalmás L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066710. PubMed ID: 16907026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How boundary slip controls emergent Darcy flow of liquids in tortuous and in capillary pores.
    Singh K
    Phys Rev E; 2020 Jul; 102(1-1):013101. PubMed ID: 32794951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimating water transport in carbon nanotubes: a critical review and inclusion of scale effects.
    Karim KE; Barisik M; Bakli C; Kim B
    Phys Chem Chem Phys; 2024 Jul; 26(28):19069-19082. PubMed ID: 38973497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transportation of thermal and velocity slip factors on three-dimensional dual phase nanomaterials liquid flow towards an exponentially stretchable surface.
    Hussain A; Akkurt N; Rehman A; Alrihieli HF; Alharbi FM; Abdussattar A; Eldin SM
    Sci Rep; 2022 Nov; 12(1):18595. PubMed ID: 36329055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microscopic theory of a Janus motor in a non-equilibrium fluid: Surface hydrodynamics and boundary conditions.
    Robertson B; Schofield J; Kapral R
    J Chem Phys; 2024 Jan; 160(1):. PubMed ID: 38165093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transportation of nanomaterial Maxwell fluid flow with thermal slip under the effect of Soret-Dufour and second-order slips: nonlinear stretching.
    Abbas N; Shatanawi W; Shatnawi TAM
    Sci Rep; 2023 Feb; 13(1):2182. PubMed ID: 36750706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shear rate threshold for the boundary slip in dense polymer films.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031608. PubMed ID: 19905124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expressions for evaluating the possibility of slip at the liquid-solid interface in open tube capillary electrochromatography.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2003 Jul; 263(1):113-8. PubMed ID: 12804892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of patterned slip on micro- and nanofluidic flows.
    Hendy SC; Jasperse M; Burnell J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016303. PubMed ID: 16090082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.