These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37260100)

  • 1. Singly Reduced Iridium Chromophores: Synthesis, Characterization, and Photochemistry.
    Baek Y; Reinhold A; Tian L; Jeffrey PD; Scholes GD; Knowles RR
    J Am Chem Soc; 2023 Jun; 145(23):12499-12508. PubMed ID: 37260100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry.
    Schreier MR; Guo X; Pfund B; Okamoto Y; Ward TR; Kerzig C; Wenger OS
    Acc Chem Res; 2022 May; 55(9):1290-1300. PubMed ID: 35414170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Origin of Photoredox Catalysis Involving Iron(II) Polypyridyl Chromophores.
    Woodhouse MD; McCusker JK
    J Am Chem Soc; 2020 Sep; 142(38):16229-16233. PubMed ID: 32914970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinterpreting the Fate of Iridium(III) Photocatalysts─Screening a Combinatorial Library to Explore Light-Driven Side-Reactions.
    Bawden JC; Francis PS; DiLuzio S; Hayne DJ; Doeven EH; Truong J; Alexander R; Henderson LC; Gómez DE; Massi M; Armstrong BI; Draper FA; Bernhard S; Connell TU
    J Am Chem Soc; 2022 Jun; 144(25):11189-11202. PubMed ID: 35704840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes.
    Huang X; Meggers E
    Acc Chem Res; 2019 Mar; 52(3):833-847. PubMed ID: 30840435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using intramolecular energy transfer to transform non-photoactive, visible-light-absorbing chromophores into sensitizers for photoredox reactions.
    Gu J; Chen J; Schmehl RH
    J Am Chem Soc; 2010 Jun; 132(21):7338-46. PubMed ID: 20459104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of chiral-at-metal catalysts and their use in asymmetric photoredox chemistry.
    Ma J; Zhang X; Huang X; Luo S; Meggers E
    Nat Protoc; 2018 Apr; 13(4):605-632. PubMed ID: 29494576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water reduction systems associated with homoleptic cyclometalated iridium complexes of various 2-phenylpyridines.
    Yuan YJ; Yu ZT; Cai JG; Zheng C; Huang W; Zou ZG
    ChemSusChem; 2013 Aug; 6(8):1357-65. PubMed ID: 23843363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclometalated iridium and platinum complexes as singlet oxygen photosensitizers: quantum yields, quenching rates and correlation with electronic structures.
    Djurovich PI; Murphy D; Thompson ME; Hernandez B; Gao R; Hunt PL; Selke M
    Dalton Trans; 2007 Sep; (34):3763-70. PubMed ID: 17712442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Platform for Near-Infrared Photoredox Catalysis.
    Ravetz BD; Tay NES; Joe CL; Sezen-Edmonds M; Schmidt MA; Tan Y; Janey JM; Eastgate MD; Rovis T
    ACS Cent Sci; 2020 Nov; 6(11):2053-2059. PubMed ID: 33274281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron Density Difference Analysis on the Oxidative and Reductive Quenching Cycles of Classical Iridium and Ruthenium Photoredox Catalysts.
    Medina E; Pinter B
    J Phys Chem A; 2020 May; 124(21):4223-4234. PubMed ID: 32364751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitization-Initiated Electron Transfer for Photoredox Catalysis.
    Ghosh I; Shaikh RS; König B
    Angew Chem Int Ed Engl; 2017 Jul; 56(29):8544-8549. PubMed ID: 28544442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the excited state and photosensitizing property of a 2-(2-pyridyl)benzo[b]thiophene-based cationic iridium complex through simple chemical modification.
    Takizawa SY; Shimada K; Sato Y; Murata S
    Inorg Chem; 2014 Mar; 53(6):2983-95. PubMed ID: 24568295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-Dependent Electron Transfer Rates for Dihydrophenazine, Phenoxazine, and Phenothiazine Photoredox Catalysts Employed in Atom Transfer Radical Polymerization.
    Sneha M; Bhattacherjee A; Lewis-Borrell L; Clark IP; Orr-Ewing AJ
    J Phys Chem B; 2021 Jul; 125(28):7840-7854. PubMed ID: 34237215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives.
    Pitre SP; McTiernan CD; Scaiano JC
    Acc Chem Res; 2016 Jun; 49(6):1320-30. PubMed ID: 27023767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron photodetachment dissociation of DNA anions with covalently or noncovalently bound chromophores.
    Gabelica V; Rosu F; De Pauw E; Antoine R; Tabarin T; Broyer M; Dugourd P
    J Am Soc Mass Spectrom; 2007 Nov; 18(11):1990-2000. PubMed ID: 17900923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis.
    Schmid L; Glaser F; Schaer R; Wenger OS
    J Am Chem Soc; 2022 Jan; 144(2):963-976. PubMed ID: 34985882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure in the transition metal block and its implications for light harvesting.
    McCusker JK
    Science; 2019 Feb; 363(6426):484-488. PubMed ID: 30705184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.