These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37260502)

  • 1. Exosomes trapping, manipulation and size-based separation using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nanoscale Adv; 2023 May; 5(11):2973-2978. PubMed ID: 37260502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrothermoplasmonic Trapping and Dynamic Manipulation of Single Colloidal Nanodiamond.
    Hong C; Yang S; Kravchenko II; Ndukaife JC
    Nano Lett; 2021 Jun; 21(12):4921-4927. PubMed ID: 34096729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Publisher Correction: Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):962. PubMed ID: 32994556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable trapping of single nanosized extracellular vesicles using plasmonics.
    Hong C; Ndukaife JC
    Nat Commun; 2023 Aug; 14(1):4801. PubMed ID: 37558710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypothermal opto-thermophoretic tweezers.
    Kollipara PS; Li X; Li J; Chen Z; Ding H; Huang S; Qin Z; Zheng Y
    Res Sq; 2023 Jan; ():. PubMed ID: 36711861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opto-Thermophoretic Attraction, Trapping, and Dynamic Manipulation of Lipid Vesicles.
    Hill EH; Li J; Lin L; Liu Y; Zheng Y
    Langmuir; 2018 Nov; 34(44):13252-13262. PubMed ID: 30350700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypothermal opto-thermophoretic tweezers.
    Kollipara PS; Li X; Li J; Chen Z; Ding H; Kim Y; Huang S; Qin Z; Zheng Y
    Nat Commun; 2023 Aug; 14(1):5133. PubMed ID: 37612299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opto-thermoelectric speckle tweezers.
    Kotnala A; Kollipara PS; Zheng Y
    Nanophotonics; 2020 Apr; 9(4):927-933. PubMed ID: 34290954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoradiator-Mediated Deterministic Opto-Thermoelectric Manipulation.
    Liu Y; Lin L; Bangalore Rajeeva B; Jarrett JW; Li X; Peng X; Kollipara P; Yao K; Akinwande D; Dunn AK; Zheng Y
    ACS Nano; 2018 Oct; 12(10):10383-10392. PubMed ID: 30226980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis.
    Flores-Flores E; Torres-Hurtado SA; Páez R; Ruiz U; Beltrán-Pérez G; Neale SL; Ramirez-San-Juan JC; Ramos-García R
    Biomed Opt Express; 2015 Oct; 6(10):4079-87. PubMed ID: 26504655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-low-power optical trapping of a single nanoparticle.
    Tang X; Zhang Y; Su W; Zhang Y; Liu Z; Yang X; Zhang J; Yang J; Yuan L
    Opt Lett; 2019 Nov; 44(21):5165-5168. PubMed ID: 31674957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers.
    Bouloumis TD; Kotsifaki DG; Nic Chormaic S
    Nano Lett; 2023 Jun; 23(11):4723-4731. PubMed ID: 37256850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incoherent Optical Tweezers on Black Titanium.
    Hashimoto S; Uenobo Y; Takao R; Yuyama KI; Shoji T; Linklater DP; Ivanova E; Juodkazis S; Kameyama T; Torimoto T; Tsuboi Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27586-27593. PubMed ID: 34085525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.
    Saleh AA; Dionne JA
    Nano Lett; 2012 Nov; 12(11):5581-6. PubMed ID: 23035765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers.
    van der Horst A; van Oostrum PD; Moroz A; van Blaaderen A; Dogterom M
    Appl Opt; 2008 Jun; 47(17):3196-202. PubMed ID: 18545293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Trapping and Manipulation of Self-Assembled Ag Nanoplates as Efficient Plasmonic Tweezers.
    Jia P; Shi H; Yan X; Pei Y; Sun X
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28731-28738. PubMed ID: 37272915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.