These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37260716)

  • 1. Simulation of a thermo-electrochemical cell with graphite rod electrodes.
    Zheng J; Li J; Zhang L; Yang Y
    RSC Adv; 2023 May; 13(24):16126-16135. PubMed ID: 37260716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gigantic and Continuous Output Power in Ionic Thermo-Electrochemical Cells by Using Electrodes with Redox Couples.
    Zhang W; Qiu L; Lian Y; Dai Y; Yin S; Wu C; Wang Q; Zeng W; Tao X
    Adv Sci (Weinh); 2023 Oct; 10(29):e2303407. PubMed ID: 37525629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon Nanotube-Graphene Hybrid Electrodes with Enhanced Thermo-Electrochemical Cell Properties.
    Zhou Y; Qian W; Huang W; Liu B; Lin H; Dong C
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31614756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Thermal Gradient in Thermo-electrochemical Cells by Insertion of a Poly(Vinylidene Fluoride) Membrane.
    Hasan SW; Said SM; Sabri MF; Bakar AS; Hashim NA; Hasnan MM; Pringle JM; MacFarlane DR
    Sci Rep; 2016 Jul; 6():29328. PubMed ID: 27381946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data on the current-voltage dependents of nickel hollow microspheres based thermo-electrochemical in alkaline electrolyte.
    Burmistrov I; Gorshkov N; Kiselev N; Artyukhov D; Kolesnikov E; Khaidarov B; Yudni A; Karunakaran G; Cho EB; Kuznetsov D; Gorokhovsky A
    Data Brief; 2020 Aug; 31():105770. PubMed ID: 32548220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial cellulose-based dual chemical reaction coupled hydrogel thermocells for efficient heat harvesting.
    Zong Y; Lou J; Li H; Li X; Jiang Y; Ding Q; Liu Z; Han W
    Carbohydr Polym; 2022 Oct; 294():119789. PubMed ID: 35868797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Optimization Strategies for Flexible Quasi-Solid-State Thermo-Electrochemical Cells.
    Huo B; Kuang F; Guo CY
    Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Operando magnetic resonance imaging for mapping of temperature and redox species in thermo-electrochemical cells.
    Gunathilaka IE; Pringle JM; O'Dell LA
    Nat Commun; 2021 Nov; 12(1):6438. PubMed ID: 34750389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Gel Thermoelectric Chemical Cell for Harvesting Low-Grade Heat Energy.
    Yue Q; Gao T; Wang Y; Meng Y; Li X; Yuan H; Xiao D
    ChemSusChem; 2023 Jan; 16(2):e202201815. PubMed ID: 36397292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Power-Density Thermoelectrochemical Cell Based on Ni/NiO Nanostructured Microsphere Electrodes with Alkaline Electrolyte.
    Artyukhov D; Kiselev N; Boychenko E; Asmolova A; Zheleznov D; Artyukhov I; Burmistrov I; Gorshkov N
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. THE NATURE AND CONTROL OF REACTIONS IN BIOLUMINESCENCE : WITH SPECIAL REFERENCE TO THE MECHANISM OF REVERSIBLE AND IRREVERSIBLE INHIBITIONS BY HYDROGEN AND HYDROXYL IONS, TEMPERATURE, PRESSURE, ALCOHOL, URETHANE, AND SULFANILAMIDE IN BACTERIA.
    Johnson FH; Eyring H; Steblay R; Chaplin H; Huber C; Gherardi G
    J Gen Physiol; 1945 May; 28(5):463-537. PubMed ID: 19873433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermo-electrochemical cells for waste heat harvesting - progress and perspectives.
    Dupont MF; MacFarlane DR; Pringle JM
    Chem Commun (Camb); 2017 Jun; 53(47):6288-6302. PubMed ID: 28534592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow field characterization between vertical plate electrodes in a bench-scale cell of electrochemical water softening.
    Chen Q; Lin W; Wang Z; Yu J; Li J; Wang Z
    Water Sci Technol; 2022 Mar; 85(6):1736-1753. PubMed ID: 35358068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry.
    Boopathy R; Sekaran G
    J Hazard Mater; 2013 Sep; 260():286-95. PubMed ID: 23770619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MXene and Carbon-Based Electrodes of Thermocells for Continuous Thermal Energy Harvest.
    Liu Z; Wei S; Hu Z; Zhu M; Chen G; Huang Y
    Small Methods; 2023 Aug; 7(8):e2300190. PubMed ID: 37096881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermo-fluid dynamics and synergistic enhancement of heat transfer by interaction between Taylor-Couette flow and heat convection.
    Masuda H; Nakagawa K; Iyota H; Wang S; Ohmura N
    Philos Trans A Math Phys Eng Sci; 2023 May; 381(2246):20220116. PubMed ID: 36907208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field-Enhanced Nanoconvection Accelerated Electrocatalytic Conversion of Water Contaminants and Electricity Generation.
    Ji Q; Zhang G; Liu H; Liu R; Qu J
    Environ Sci Technol; 2019 Mar; 53(5):2713-2719. PubMed ID: 30726067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomass-Derived Sustainable Electrode Material for Low-Grade Heat Harvesting.
    Park J; Kim T
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of thermo-electrochemical conversion into forced convection cooling.
    Ikeda Y; Fukui K; Murakami Y
    Phys Chem Chem Phys; 2019 Dec; 21(46):25838-25848. PubMed ID: 31729518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.