These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37261647)

  • 21. A three-dimensional electrochemical paper-based analytical device for low-cost diagnostics.
    Punjiya M; Moon CH; Matharu Z; Rezaei Nejad H; Sonkusale S
    Analyst; 2018 Feb; 143(5):1059-1064. PubMed ID: 29410987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pump-Free Microfluidic Device for the Electrochemical Detection of α
    Sierra T; Jang I; Noviana E; Crevillen AG; Escarpa A; Henry CS
    ACS Sens; 2021 Aug; 6(8):2998-3005. PubMed ID: 34350757
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Paper-Based Electrochemical Sensors Using Paper as a Scaffold to Create Porous Carbon Nanotube Electrodes.
    Valentine CJ; Takagishi K; Umezu S; Daly R; De Volder M
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30680-30685. PubMed ID: 32519833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Paper-based chemical and biological sensors: Engineering aspects.
    Ahmed S; Bui MP; Abbas A
    Biosens Bioelectron; 2016 Mar; 77():249-63. PubMed ID: 26410389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid Electrochemical Flow Analysis of Urinary Creatinine on Paper: Unleashing the Potential of Two-Electrode Detection.
    Bezinge L; Tappauf N; Richards DA; Shih CJ; deMello AJ
    ACS Sens; 2023 Oct; 8(10):3964-3972. PubMed ID: 37756250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling-Guided Design of Paper Microfluidic Networks: A Case Study of Sequential Fluid Delivery.
    Rath D; Toley BJ
    ACS Sens; 2021 Jan; 6(1):91-99. PubMed ID: 33382580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrophoretic µPAD for Purification and Analysis of DNA Samples.
    Heinsohn NK; Niedl RR; Anielski A; Lisdat F; Beta C
    Biosensors (Basel); 2022 Jan; 12(2):. PubMed ID: 35200323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices.
    Godino N; Gorkin R; Bourke K; Ducrée J
    Lab Chip; 2012 Sep; 12(18):3281-4. PubMed ID: 22842728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches.
    Mumtaz Z; Rashid Z; Ali A; Arif A; Ameen F; AlTami MS; Yousaf MZ
    Biosensors (Basel); 2023 May; 13(6):. PubMed ID: 37366949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel concept of washing for microfluidic paper-based analytical devices based on capillary force of paper substrates.
    Mohammadi S; Busa LS; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M
    Anal Bioanal Chem; 2016 Nov; 408(27):7559-7563. PubMed ID: 27544520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and Fabrication of Capillary-Driven Flow Device for Point-Of-Care Diagnostics.
    Hassan SU; Zhang X
    Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32326641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzyme-linked immunosorbent assays (ELISA) based on thread, paper, and fabric.
    Gonzalez A; Gaines M; Gallegos LY; Guevara R; Gomez FA
    Electrophoresis; 2018 Feb; 39(3):476-484. PubMed ID: 29171063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzyme embedded microfluidic paper-based analytic device (μPAD): a comprehensive review.
    Nadar SS; Patil PD; Tiwari MS; Ahirrao DJ
    Crit Rev Biotechnol; 2021 Nov; 41(7):1046-1080. PubMed ID: 33730940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic paper-based analytical devices and electromembrane extraction; Hyphenation of fields towards effective analytical platforms.
    Alidoust M; Yamini Y; Baharfar M
    Anal Chim Acta; 2022 Jul; 1216():339987. PubMed ID: 35691677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering strategies for enhancing the performance of electrochemical paper-based analytical devices.
    Baharfar M; Rahbar M; Tajik M; Liu G
    Biosens Bioelectron; 2020 Nov; 167():112506. PubMed ID: 32823207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid and inexpensive process to fabricate paper based microfluidic devices using a cut and heat plastic lamination process.
    Kumawat N; Soman SS; Vijayavenkataraman S; Kumar S
    Lab Chip; 2022 Sep; 22(18):3377-3389. PubMed ID: 35801817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. "Do it yourself" protocol to fabricate dual-detection paper-based analytical device for salivary biomarker analysis.
    Sousa LR; Silva-Neto HA; Castro LF; Oliveira KA; Figueredo F; Cortón E; Coltro WKT
    Anal Bioanal Chem; 2023 Jul; 415(18):4391-4400. PubMed ID: 36773069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diode Laser and Polyimide Tape Enables Cheap and Fast Fabrication of Flexible Microfluidic Sensing Devices.
    Thaweeskulchai T; Schulte A
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reducing Unspecific Protein Adsorption in Microfluidic Papers Using Fiber-Attached Polymer Hydrogels.
    von Stockert AR; Luongo A; Langhans M; Brandstetter T; Rühe J; Meckel T; Biesalski M
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.