These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37261999)
1. Biophysical Properties of the Fibril Structure of the Toxic Conformer of Amyloid-β42: Characterization by Atomic Force Microscopy in Liquid and Molecular Docking. Biyani R; Hirata K; Oqmhula K; Yurtsever A; Hongo K; Maezono R; Takagi M; Fukuma T; Biyani M ACS Appl Mater Interfaces; 2023 Jun; 15(23):27789-27800. PubMed ID: 37261999 [TBL] [Abstract][Full Text] [Related]
2. An RNA aptamer with potent affinity for a toxic dimer of amyloid β42 has potential utility for histochemical studies of Alzheimer's disease. Murakami K; Obata Y; Sekikawa A; Ueda H; Izuo N; Awano T; Takabe K; Shimizu T; Irie K J Biol Chem; 2020 Apr; 295(15):4870-4880. PubMed ID: 32127399 [TBL] [Abstract][Full Text] [Related]
4. Toxicity in rat primary neurons through the cellular oxidative stress induced by the turn formation at positions 22 and 23 of Aβ42. Izuo N; Kume T; Sato M; Murakami K; Irie K; Izumi Y; Akaike A ACS Chem Neurosci; 2012 Sep; 3(9):674-81. PubMed ID: 23019494 [TBL] [Abstract][Full Text] [Related]
5. Insulin deficiency promotes formation of toxic amyloid-β42 conformer co-aggregating with hyper-phosphorylated tau oligomer in an Alzheimer's disease model. Imamura T; Yanagihara YT; Ohyagi Y; Nakamura N; Iinuma KM; Yamasaki R; Asai H; Maeda M; Murakami K; Irie K; Kira JI Neurobiol Dis; 2020 Apr; 137():104739. PubMed ID: 31927145 [TBL] [Abstract][Full Text] [Related]
6. Non-toxic conformer of amyloid β may suppress amyloid β-induced toxicity in rat primary neurons: implications for a novel therapeutic strategy for Alzheimer's disease. Izuo N; Murakami K; Sato M; Iwasaki M; Izumi Y; Shimizu T; Akaike A; Irie K; Kume T Biochem Biophys Res Commun; 2013 Aug; 438(1):1-5. PubMed ID: 23747423 [TBL] [Abstract][Full Text] [Related]
7. Amyloid β 42 fibril structure based on small-angle scattering. Lattanzi V; André I; Gasser U; Dubackic M; Olsson U; Linse S Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34815346 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a Conformation-Restricted Amyloid β Peptide and Immunoreactivity of Its Antibody in Human AD brain. Kageyama Y; Irie Y; Matsushima Y; Segawa T; Bellier JP; Hidaka K; Sugiyama H; Kaneda D; Hashizume Y; Akatsu H; Miki K; Kita A; Walker DG; Irie K; Tooyama I ACS Chem Neurosci; 2021 Sep; 12(18):3418-3432. PubMed ID: 34464082 [TBL] [Abstract][Full Text] [Related]
10. Identification of new pentapeptides as potential inhibitors of amyloid-β Kaur A; Goyal B J Mol Graph Model; 2023 Nov; 124():108558. PubMed ID: 37390790 [TBL] [Abstract][Full Text] [Related]
11. A new structural model of Alzheimer's Aβ42 fibrils based on electron paramagnetic resonance data and Rosetta modeling. Gu L; Tran J; Jiang L; Guo Z J Struct Biol; 2016 Apr; 194(1):61-7. PubMed ID: 26827680 [TBL] [Abstract][Full Text] [Related]
12. Quantitative NMR analysis of the mechanism and kinetics of chaperone Hsp104 action on amyloid-β42 aggregation and fibril formation. Ghosh S; Tugarinov V; Clore GM Proc Natl Acad Sci U S A; 2023 May; 120(21):e2305823120. PubMed ID: 37186848 [TBL] [Abstract][Full Text] [Related]
13. Impact of K16A and K28A mutation on the structure and dynamics of amyloid-β Shuaib S; Saini RK; Goyal D; Goyal B J Biomol Struct Dyn; 2020 Feb; 38(3):708-721. PubMed ID: 30821624 [TBL] [Abstract][Full Text] [Related]
14. Non-micellar ganglioside GM1 induces an instantaneous conformational change in Aβ Kumar M; Ivanova MI; Ramamoorthy A Biophys Chem; 2023 Oct; 301():107091. PubMed ID: 37549471 [TBL] [Abstract][Full Text] [Related]
15. The Impact of Natural Compounds on S-Shaped Aβ42 Fibril: From Molecular Docking to Biophysical Characterization. Muscat S; Pallante L; Stojceski F; Danani A; Grasso G; Deriu MA Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32188076 [TBL] [Abstract][Full Text] [Related]
16. Simulations on the dual effects of flavonoids as suppressors of Aβ42 fibrillogenesis and destabilizers of mature fibrils. Gargari SA; Barzegar A Sci Rep; 2020 Oct; 10(1):16636. PubMed ID: 33024142 [TBL] [Abstract][Full Text] [Related]
17. Biophysical characterization as a tool to predict amyloidogenic and toxic properties of amyloid-β42 peptides. Shobo A; Röntgen A; Hancock MA; Multhaup G FEBS Lett; 2022 Jun; 596(11):1401-1411. PubMed ID: 35466397 [TBL] [Abstract][Full Text] [Related]
18. Different Aggregation Pathways and Structures for Aβ40 and Aβ42 Peptides. Wang L; Eom K; Kwon T Biomolecules; 2021 Jan; 11(2):. PubMed ID: 33573350 [TBL] [Abstract][Full Text] [Related]
19. Modeling structural interconversion in Alzheimers' amyloid beta peptide with classical and intrinsically disordered protein force fields. Wu KY; Doan D; Medrano M; Chang CA J Biomol Struct Dyn; 2022; 40(20):10005-10022. PubMed ID: 34152264 [TBL] [Abstract][Full Text] [Related]
20. Effects of natural compounds on conformational properties and hairpin formation of amyloid-β Ghorbani M; Soleymani H; Allahverdi A; Shojaeilangari S; Naderi-Manesh H J Biomol Struct Dyn; 2020 Jul; 38(11):3371-3383. PubMed ID: 31496378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]