These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37262324)
1. Computation of CCSD(T)-Quality NMR Chemical Shifts via Δ-Machine Learning from DFT. Kleine Büning JB; Grimme S J Chem Theory Comput; 2023 Jun; 19(12):3601-3615. PubMed ID: 37262324 [TBL] [Abstract][Full Text] [Related]
5. Do Double-Hybrid Exchange-Correlation Functionals Provide Accurate Chemical Shifts? A Benchmark Assessment for Proton NMR. de Oliveira MT; Alves JMA; Braga AAC; Wilson DJD; Barboza CA J Chem Theory Comput; 2021 Nov; 17(11):6876-6885. PubMed ID: 34637284 [TBL] [Abstract][Full Text] [Related]
6. Machine learning-based correction for spin-orbit coupling effects in NMR chemical shift calculations. Kleine Büning JB; Grimme S; Bursch M Phys Chem Chem Phys; 2024 Feb; 26(6):4870-4884. PubMed ID: 38230684 [TBL] [Abstract][Full Text] [Related]
7. On the Efficiency of the Density Functional Theory (DFT)-Based Computational Protocol for Rusakov YY; Semenov VA; Rusakova IL Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834068 [TBL] [Abstract][Full Text] [Related]
8. MIM-ML: A Novel Quantum Chemical Fragment-Based Random Forest Model for Accurate Prediction of NMR Chemical Shifts of Nucleic Acids. Chandy SK; Raghavachari K J Chem Theory Comput; 2023 Oct; 19(19):6632-6642. PubMed ID: 37703522 [TBL] [Abstract][Full Text] [Related]
9. On the accuracy of the GIAO-DFT calculation of 15N NMR chemical shifts of the nitrogen-containing heterocycles--a gateway to better agreement with experiment at lower computational cost. Samultsev DO; Semenov VA; Krivdin LB Magn Reson Chem; 2014 May; 52(5):222-30. PubMed ID: 24573615 [TBL] [Abstract][Full Text] [Related]
10. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections. Fedorov SV; Rusakov YY; Krivdin LB Magn Reson Chem; 2014 Nov; 52(11):699-710. PubMed ID: 25155415 [TBL] [Abstract][Full Text] [Related]
11. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment. Jose KV; Raghavachari K J Chem Theory Comput; 2017 Mar; 13(3):1147-1158. PubMed ID: 28194972 [TBL] [Abstract][Full Text] [Related]
12. Predicting Density Functional Theory-Quality Nuclear Magnetic Resonance Chemical Shifts via Δ-Machine Learning. Unzueta PA; Greenwell CS; Beran GJO J Chem Theory Comput; 2021 Feb; 17(2):826-840. PubMed ID: 33428408 [TBL] [Abstract][Full Text] [Related]
13. Improving the accuracy of Hersh WH; Chan TY Beilstein J Org Chem; 2023; 19():36-56. PubMed ID: 36726479 [TBL] [Abstract][Full Text] [Related]
14. DELTA50: A Highly Accurate Database of Experimental Cohen RD; Wood JS; Lam YH; Buevich AV; Sherer EC; Reibarkh M; Williamson RT; Martin GE Molecules; 2023 Mar; 28(6):. PubMed ID: 36985422 [TBL] [Abstract][Full Text] [Related]
15. Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set. Paschoal D; Guerra CF; de Oliveira MA; Ramalho TC; Dos Santos HF J Comput Chem; 2016 Oct; 37(26):2360-73. PubMed ID: 27510431 [TBL] [Abstract][Full Text] [Related]
16. Accurate Prediction of Nuclear Magnetic Resonance Parameters via the XYG3 Type of Doubly Hybrid Density Functionals. Yan W; Xu X J Chem Theory Comput; 2022 May; 18(5):2931-2946. PubMed ID: 35467852 [TBL] [Abstract][Full Text] [Related]
17. Benchmark Study on the Calculation of Stückrath JB; Gasevic T; Bursch M; Grimme S Inorg Chem; 2022 Mar; 61(9):3903-3917. PubMed ID: 35180346 [TBL] [Abstract][Full Text] [Related]
19. A new double-reference correction scheme for accurate and efficient computation of NMR chemical shieldings. Crittenden DL Phys Chem Chem Phys; 2022 Nov; 24(44):27055-27063. PubMed ID: 36322044 [TBL] [Abstract][Full Text] [Related]