These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37262350)

  • 1. Near-Field Coupling with a Nanoimprinted Probe for Dark Exciton Nanoimaging in Monolayer WSe
    Zhou J; Thomas JC; Barre E; Barnard ES; Raja A; Cabrini S; Munechika K; Schwartzberg A; Weber-Bargioni A
    Nano Lett; 2023 Jun; 23(11):4901-4907. PubMed ID: 37262350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tip-Enhanced Dark Exciton Nanoimaging and Local Strain Control in Monolayer WSe
    Hasz K; Hu Z; Park KD; Raschke MB
    Nano Lett; 2023 Jan; 23(1):198-204. PubMed ID: 36538369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect.
    Park KD; Jiang T; Clark G; Xu X; Raschke MB
    Nat Nanotechnol; 2018 Jan; 13(1):59-64. PubMed ID: 29158602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoluminescence upconversion in monolayer WSe
    Mueller NS; Arul R; Kang G; Saunders AP; Johnson AC; Sánchez-Iglesias A; Hu S; Jakob LA; Bar-David J; de Nijs B; Liz-Marzán LM; Liu F; Baumberg JJ
    Nat Commun; 2023 Sep; 14(1):5726. PubMed ID: 37714855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Nanocavity Induced Coupling and Boost of Dark Excitons in Monolayer WSe
    Lo TW; Chen X; Zhang Z; Zhang Q; Leung CW; Zayats AV; Lei D
    Nano Lett; 2022 Mar; 22(5):1915-1921. PubMed ID: 35225629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant Enhancement of Defect-Bound Exciton Luminescence and Suppression of Band-Edge Luminescence in Monolayer WSe
    Johnson AD; Cheng F; Tsai Y; Shih CK
    Nano Lett; 2017 Jul; 17(7):4317-4322. PubMed ID: 28564544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sharp, high numerical aperture (NA), nanoimprinted bare pyramid probe for optical mapping.
    Zhou J; Gashi A; Riminucci F; Chang B; Barnard E; Cabrini S; Weber-Bargioni A; Schwartzberg A; Munechika K
    Rev Sci Instrum; 2023 Mar; 94(3):033902. PubMed ID: 37012819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tip-Enhanced Photoluminescence of Freestanding Lateral Heterobubbles.
    Albagami A; Ambardar S; Hrim H; Sahoo PK; Emirov Y; Gutiérrez HR; Voronine DV
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):11006-11015. PubMed ID: 35170302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating collapsible plasmonic gaps on near-field probes for polarization-resolved mapping of plasmon-enhanced emission in 2D material.
    Zhou J; Barnard E; Cabrini S; Munechika K; Schwartzberg A; Weber-Bargioni A
    Opt Express; 2023 Jun; 31(12):20440-20448. PubMed ID: 37381438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control.
    Park KD; Khatib O; Kravtsov V; Clark G; Xu X; Raschke MB
    Nano Lett; 2016 Apr; 16(4):2621-7. PubMed ID: 26937992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber.
    Calafiore G; Koshelev A; Darlington TP; Borys NJ; Melli M; Polyakov A; Cantarella G; Allen FI; Lum P; Wong E; Sassolini S; Weber-Bargioni A; Schuck PJ; Cabrini S; Munechika K
    Sci Rep; 2017 May; 7(1):1651. PubMed ID: 28490793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant Photoluminescence Enhancement of Monolayer WSe
    Li C; Luo H; Hou L; Wang Q; Liu K; Gan X; Zhao J; Xiao F
    Nano Lett; 2024 May; 24(19):5879-5885. PubMed ID: 38652056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling nanobubbles in 2D lateral heterostructures.
    Ambardar S; Kamh R; Withers ZH; Sahoo PK; Voronine DV
    Nanoscale; 2022 Jun; 14(22):8050-8059. PubMed ID: 35587784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons.
    Zhou Y; Scuri G; Wild DS; High AA; Dibos A; Jauregui LA; Shu C; De Greve K; Pistunova K; Joe AY; Taniguchi T; Watanabe K; Kim P; Lukin MD; Park H
    Nat Nanotechnol; 2017 Sep; 12(9):856-860. PubMed ID: 28650440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing Excitonic Rydberg States by Plasmon Enhanced Nonlinear Optical Spectroscopy in Monolayer WS
    Shi J; Lin Z; Zhu Z; Zhou J; Xu GQ; Xu QH
    ACS Nano; 2022 Oct; 16(10):15862-15872. PubMed ID: 36169603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocavity Clock Spectroscopy: Resolving Competing Exciton Dynamics in WSe
    May MA; Jiang T; Du C; Park KD; Xu X; Belyanin A; Raschke MB
    Nano Lett; 2021 Jan; 21(1):522-528. PubMed ID: 33301334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing dark exciton navigation through a local strain landscape in a WSe
    Gelly RJ; Renaud D; Liao X; Pingault B; Bogdanovic S; Scuri G; Watanabe K; Taniguchi T; Urbaszek B; Park H; Lončar M
    Nat Commun; 2022 Jan; 13(1):232. PubMed ID: 35017506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinctive Signatures of the Spin- and Momentum-Forbidden Dark Exciton States in the Photoluminescence of Strained WSe
    Peng GH; Lo PY; Li WH; Huang YC; Chen YH; Lee CH; Yang CK; Cheng SJ
    Nano Lett; 2019 Apr; 19(4):2299-2312. PubMed ID: 30860847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Emitting Plexciton: Exploiting Plasmon-Exciton Interaction in the Intermediate Coupling Regime.
    Sun J; Hu H; Zheng D; Zhang D; Deng Q; Zhang S; Xu H
    ACS Nano; 2018 Oct; 12(10):10393-10402. PubMed ID: 30222317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective Photoluminescence Imaging of Bubbles in hBN-Encapsulated WSe
    Lee SY; Jeong TY; Ahn S; Jung S; Cho YH; Yee KJ
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32085486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.