These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37263101)

  • 1. A robust Freeman-Hill-inspired pulse protocol for ringdown-free T
    Mayes ZG; Rice WH; Chi L; Woelk K
    J Magn Reson; 2023 Jul; 352():107490. PubMed ID: 37263101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin-lattice relaxation and a fast T1-map acquisition method in MRI with transient-state magnetization.
    Hsu JJ; Lowe IJ
    J Magn Reson; 2004 Aug; 169(2):270-8. PubMed ID: 15261622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies and tactics in NMR imaging relaxation time measurements. I. Minimizing relaxation time errors due to image noise--the ideal case.
    Kurland RJ
    Magn Reson Med; 1985 Apr; 2(2):136-58. PubMed ID: 3831683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Very short NMR relaxation times of anions in ionic liquids: new pulse sequence to eliminate the acoustic ringing.
    Klimavicius V; Gdaniec Z; Balevicius V
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():879-83. PubMed ID: 24938418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative magnetic resonance methods for in vivo investigation of the human liver and spleen. Technical aspects and preliminary clinical results.
    Thomsen C
    Acta Radiol Suppl; 1996; 401():1-34. PubMed ID: 8604619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel pulse sequence and inversion algorithm of three-dimensional low field NMR technique in unconventional resources.
    Liu J; Fan Y; Qiu T; Ge X; Deng S; Xing D
    J Magn Reson; 2019 Jun; 303():67-74. PubMed ID: 31004986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative time- and frequency-domain analysis of the two-pulse COSY revamped by asymmetric Z-gradient echo detection NMR experiment: Theoretical and experimental aspects, time-zero data truncation artifacts, and radiation damping.
    Kirsch S; Hull WE
    J Chem Phys; 2008 Jul; 129(4):044505. PubMed ID: 18681658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance imaging (MRI): method and early clinical experiences in diseases of the central nervous system.
    Huk WJ; Gademann G
    Neurosurg Rev; 1984; 7(4):259-80. PubMed ID: 6397697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid assessment of longitudinal relaxation time in materials and tissues with extremely fast signal decay using UTE sequences and the variable flip angle method.
    Springer F; Steidle G; Martirosian P; Syha R; Claussen CD; Schick F
    Invest Radiol; 2011 Oct; 46(10):610-7. PubMed ID: 21577126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction of errors caused by imperfect inversion pulses in MR imaging measurement of T1 relaxation times.
    Kingsley PB; Ogg RJ; Reddick WE; Steen RG
    Magn Reson Imaging; 1998 Nov; 16(9):1049-55. PubMed ID: 9839989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water proton spin saturation affects measured protein backbone 15N spin relaxation rates.
    Chen K; Tjandra N
    J Magn Reson; 2011 Dec; 213(1):151-7. PubMed ID: 22015249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EXponentially Converging Eradication Pulse Train (EXCEPT) for solvent-signal suppression in investigations with variable T(1) times.
    Satterfield ET; Pfaff AR; Zhang W; Chi L; Gerald RE; Woelk K
    J Magn Reson; 2016 Jul; 268():68-72. PubMed ID: 27179454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel improved method for analysis of 2D diffusion-relaxation data--2D PARAFAC-Laplace decomposition.
    Tønning E; Polders D; Callaghan PT; Engelsen SB
    J Magn Reson; 2007 Sep; 188(1):10-23. PubMed ID: 17596979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PERFIDI: parametrically enabled relaxation filters with double and multiple inversion.
    Sykora S; Bortollotti V; Fantazzini P
    Magn Reson Imaging; 2007 May; 25(4):529-32. PubMed ID: 17466780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of magnetic resonance image (MRI) intensity values on relaxation times, pulse intervals and other signal attenuation factors.
    Yamanashi WS; Anderson DW; Lester PD; Herrick D; Frazer JW
    Physiol Chem Phys Med NMR; 1985; 17(1):81-100. PubMed ID: 4034683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New pulse sequences for T1- and T1/T2-contrast enhancing in NMR imaging.
    Andreev NK; Hakimov AM; Idiyatullin DS
    Magn Reson Imaging; 1998 Oct; 16(8):981-7. PubMed ID: 9814781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Torus factor-The relationship between radiofrequency field and radial position in toroid cavity probes.
    Woelk K
    J Magn Reson; 2000 Sep; 146(1):157-64. PubMed ID: 10968968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct measurements of protein backbone 15N spin relaxation rates from peak line-width using a fully-relaxed Accordion 3D HNCO experiment.
    Chen K; Tjandra N
    J Magn Reson; 2009 Mar; 197(1):71-6. PubMed ID: 19114314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid measurement of T
    Guo J; Zamiri MS; Balcom BJ
    J Magn Reson; 2022 Feb; 335():107123. PubMed ID: 34942574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power-optimized, time-reversal pulse sequence for a robust recovery of signals from rigid segments using time domain NMR.
    Garcia RHS; Filgueiras JG; deAzevedo ER; Colnago LA
    Solid State Nucl Magn Reson; 2019 Dec; 104():101619. PubMed ID: 31470338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.