These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37263270)

  • 1. The V-type ATPase enhances photosynthesis in marine phytoplankton and further links phagocytosis to symbiogenesis.
    Yee DP; Samo TJ; Abbriano RM; Shimasaki B; Vernet M; Mayali X; Weber PK; Mitchell BG; Hildebrand M; Decelle J; Tresguerres M
    Curr Biol; 2023 Jun; 33(12):2541-2547.e5. PubMed ID: 37263270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symbiont photosynthesis in giant clams is promoted by V-type H
    Armstrong EJ; Roa JN; Stillman JH; Tresguerres M
    J Exp Biol; 2018 Sep; 221(Pt 18):. PubMed ID: 30065035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon concentrating mechanisms in eukaryotic marine phytoplankton.
    Reinfelder JR
    Ann Rev Mar Sci; 2011; 3():291-315. PubMed ID: 21329207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis.
    Barott KL; Venn AA; Perez SO; Tambutté S; Tresguerres M
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):607-12. PubMed ID: 25548188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modern descendant of early green algal phagotrophs.
    Maruyama S; Kim E
    Curr Biol; 2013 Jun; 23(12):1081-4. PubMed ID: 23707430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unicellular C4 photosynthesis in a marine diatom.
    Reinfelder JR; Kraepiel AM; Morel FM
    Nature; 2000 Oct; 407(6807):996-9. PubMed ID: 11069177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
    Young JN; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3751-3762. PubMed ID: 28645158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-driven Proton Pumps as a Potential Regulator for Carbon Fixation in Marine Diatoms.
    Yoshizawa S; Azuma T; Kojima K; Inomura K; Hasegawa M; Nishimura Y; Kikuchi M; Armin G; Tsukamoto Y; Miyashita H; Ifuku K; Yamano T; Marchetti A; Fukuzawa H; Sudo Y; Kamikawa R
    Microbes Environ; 2023; 38(2):. PubMed ID: 37344444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel and potential physiological roles of vacuolar-type H+-ATPase in marine organisms.
    Tresguerres M
    J Exp Biol; 2016 Jul; 219(Pt 14):2088-97. PubMed ID: 27445397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upper ocean oxygenation, evolution of RuBisCO and the Phanerozoic succession of phytoplankton.
    Rickaby REM; Eason Hubbard MR
    Free Radic Biol Med; 2019 Aug; 140():295-304. PubMed ID: 31075497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new widespread subclass of carbonic anhydrase in marine phytoplankton.
    Jensen EL; Clement R; Kosta A; Maberly SC; Gontero B
    ISME J; 2019 Aug; 13(8):2094-2106. PubMed ID: 31024153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking the early events of photosymbiosis evolution.
    Quevarec L; Brasseur G; Aragnol D; Robaglia C
    Trends Plant Sci; 2024 Apr; 29(4):406-412. PubMed ID: 38016867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms.
    Tsuji Y; Nakajima K; Matsuda Y
    J Exp Bot; 2017 Jun; 68(14):3763-3772. PubMed ID: 28633304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms.
    Tsuji Y; Mahardika A; Matsuda Y
    J Exp Bot; 2017 Jun; 68(14):3949-3958. PubMed ID: 28398591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis.
    Robertson DL; Tartar A
    Mol Biol Evol; 2006 May; 23(5):1048-55. PubMed ID: 16495348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolution of modern eukaryotic phytoplankton.
    Falkowski PG; Katz ME; Knoll AH; Quigg A; Raven JA; Schofield O; Taylor FJ
    Science; 2004 Jul; 305(5682):354-60. PubMed ID: 15256663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization, light-dependent expression, and cellular localization of a host vacuolar-type H
    Ip YK; Hiong KC; Lim LJY; Choo CYL; Boo MV; Wong WP; Neo ML; Chew SF
    Gene; 2018 Jun; 659():137-148. PubMed ID: 29559349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic changes in carbonate chemistry in the microenvironment around single marine phytoplankton cells.
    Chrachri A; Hopkinson BM; Flynn K; Brownlee C; Wheeler GL
    Nat Commun; 2018 Jan; 9(1):74. PubMed ID: 29311545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The diversity of CO2-concentrating mechanisms in marine diatoms as inferred from their genetic content.
    Shen C; Dupont CL; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3937-3948. PubMed ID: 28510761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms.
    Young JN; Heureux AM; Sharwood RE; Rickaby RE; Morel FM; Whitney SM
    J Exp Bot; 2016 May; 67(11):3445-56. PubMed ID: 27129950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.