These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37264102)

  • 1. Why charging Li-air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation.
    Ahn S; Zor C; Yang S; Lagnoni M; Dewar D; Nimmo T; Chau C; Jenkins M; Kibler AJ; Pateman A; Rees GJ; Gao X; Adamson P; Grobert N; Bertei A; Johnson LR; Bruce PG
    Nat Chem; 2023 Jul; 15(7):1022-1029. PubMed ID: 37264102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries.
    Liang Z; Lu YC
    J Am Chem Soc; 2016 Jun; 138(24):7574-83. PubMed ID: 27228413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the Li
    Feng N; Mu X; Zhang X; He P; Zhou H
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3733-3739. PubMed ID: 28079362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charging a Li-O₂ battery using a redox mediator.
    Chen Y; Freunberger SA; Peng Z; Fontaine O; Bruce PG
    Nat Chem; 2013 Jun; 5(6):489-94. PubMed ID: 23695630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Operando observation of the gold-electrolyte interface in Li-O2 batteries.
    Gittleson FS; Ryu WH; Taylor AD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation.
    Petit YK; Mourad E; Prehal C; Leypold C; Windischbacher A; Mijailovic D; Slugovc C; Borisov SM; Zojer E; Brutti S; Fontaine O; Freunberger SA
    Nat Chem; 2021 May; 13(5):465-471. PubMed ID: 33723377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of transition metal oxides on the kinetics of Li2O2 oxidation in Li-O2 batteries: high activity of chromium oxides.
    Yao KP; Lu YC; Amanchukwu CV; Kwabi DG; Risch M; Zhou J; Grimaud A; Hammond PT; Bardé F; Shao-Horn Y
    Phys Chem Chem Phys; 2014 Feb; 16(6):2297-304. PubMed ID: 24352578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium-Oxygen Batteries.
    Kundu D; Black R; Adams B; Nazar LF
    ACS Cent Sci; 2015 Dec; 1(9):510-5. PubMed ID: 27163015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic properties of α-MnO
    Alam K; Seriani N; Sen P
    Phys Chem Chem Phys; 2020 May; 22(17):9233-9239. PubMed ID: 32307466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crown Ether Electrolyte Induced Li
    Li M; Wu J; You Z; Dai Z; Gu Y; Shi L; Wu M; Wen Z
    Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202403521. PubMed ID: 38654696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotopic Depth Profiling of Discharge Products Identifies Reactive Interfaces in an Aprotic Li-O
    Nishioka K; Morimoto K; Kusumoto T; Harada T; Kamiya K; Mukouyama Y; Nakanishi S
    J Am Chem Soc; 2021 May; 143(19):7394-7401. PubMed ID: 33945262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen Radical Anion Substituted Iron Phthalocyanine as an Effective Redox Mediator for Li-O
    Cheng Y; Dou Y; Zhang X; Song Y; Liu S; Wang Y; Zhang H; Chen X; Qiu J; Wei Y
    J Phys Chem Lett; 2023 Aug; 14(30):6749-6756. PubMed ID: 37471689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Changes in Charge Transfer Resistances during Cycling of Aprotic Li-O
    Morimoto K; Kusumoto T; Nishioka K; Kamiya K; Mukouyama Y; Nakanishi S
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42803-42810. PubMed ID: 32808758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries.
    McCloskey BD; Speidel A; Scheffler R; Miller DC; Viswanathan V; Hummelshøj JS; Nørskov JK; Luntz AC
    J Phys Chem Lett; 2012 Apr; 3(8):997-1001. PubMed ID: 26286562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 Batteries.
    Lu YC; Shao-Horn Y
    J Phys Chem Lett; 2013 Jan; 4(1):93-9. PubMed ID: 26291218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Evaluation of LixOy Formation on δ-MnO2 in Nonaqueous Li-Air Batteries.
    Liu Z; De Jesus LR; Banerjee S; Mukherjee PP
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23028-36. PubMed ID: 27532334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical evidence of water serving as a promoter for lithium superoxide disproportionation in Li-O
    Shan N; Redfern PC; Ngo AT; Zapol P; Markovic N; Curtiss LA
    Phys Chem Chem Phys; 2021 May; 23(17):10440-10447. PubMed ID: 33890602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A PtRu catalyzed rechargeable oxygen electrode for Li-O2 batteries: performance improvement through Li2O2 morphology control.
    Yang Y; Liu W; Wang Y; Wang X; Xiao L; Lu J; Zhuang L
    Phys Chem Chem Phys; 2014 Oct; 16(38):20618-23. PubMed ID: 25158000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in understanding of the mechanism and control of Li
    Lyu Z; Zhou Y; Dai W; Cui X; Lai M; Wang L; Huo F; Huang W; Hu Z; Chen W
    Chem Soc Rev; 2017 Oct; 46(19):6046-6072. PubMed ID: 28857099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations.
    Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.