These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37264294)

  • 1. Integrated effects of top-down attention and statistical learning during visual search: An EEG study.
    Dolci C; Boehler CN; Santandrea E; Dewulf A; Ben-Hamed S; Macaluso E; Chelazzi L; Rashal E
    Atten Percept Psychophys; 2023 Aug; 85(6):1819-1833. PubMed ID: 37264294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An EEG study of the combined effects of top-down and bottom-up attentional selection under varying task difficulty.
    Rashal E; Senoussi M; Santandrea E; Ben-Hamed S; Macaluso E; Chelazzi L; Boehler CN
    Psychophysiology; 2022 Jun; 59(6):e14002. PubMed ID: 35060631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamics of statistical learning in visual search and its interaction with salience processing: An EEG study.
    Dolci C; Rashal E; Santandrea E; Ben Hamed S; Chelazzi L; Macaluso E; Boehler CN
    Neuroimage; 2024 Feb; 286():120514. PubMed ID: 38211706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain and Cognitive Mechanisms of Top-Down Attentional Control in a Multisensory World: Benefits of Electrical Neuroimaging.
    Matusz PJ; Turoman N; Tivadar RI; Retsa C; Murray MM
    J Cogn Neurosci; 2019 Mar; 31(3):412-430. PubMed ID: 30513045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Express attentional re-engagement but delayed entry into consciousness following invalid spatial cues in visual search.
    Brisson B; Jolicoeur P
    PLoS One; 2008; 3(12):e3967. PubMed ID: 19088847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The roles of feature-specific task set and bottom-up salience in attentional capture: an ERP study.
    Eimer M; Kiss M; Press C; Sauter D
    J Exp Psychol Hum Percept Perform; 2009 Oct; 35(5):1316-28. PubMed ID: 19803639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Electrophysiological Markers of Statistically Learned Attentional Enhancement: Evidence for a Saliency-based Mechanism.
    Duncan DH; Theeuwes J; van Moorselaar D
    J Cogn Neurosci; 2023 Dec; 35(12):2110-2125. PubMed ID: 37801336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attentional capture by a color singleton is stronger at spatially relevant than irrelevant locations: Evidence from an ERP study.
    Su Y; Huang W; Yang N; Yan K; Ding Y; Qu Z
    Psychophysiology; 2020 Oct; 57(10):e13640. PubMed ID: 33460208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top-down task sets for combined features: behavioral and electrophysiological evidence for two stages in attentional object selection.
    Kiss M; Grubert A; Eimer M
    Atten Percept Psychophys; 2013 Feb; 75(2):216-28. PubMed ID: 23143916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection history alters attentional filter settings persistently and beyond top-down control.
    Kadel H; Feldmann-Wüstefeld T; Schubö A
    Psychophysiology; 2017 May; 54(5):736-754. PubMed ID: 28169422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deconstructing Reorienting of Attention: Cue Predictiveness Modulates the Inhibition of the No-target Side and the Hemispheric Distribution of the P1 Response to Invalid Targets.
    Doricchi F; Pellegrino M; Marson F; Pinto M; Caratelli L; Cestari V; Rossi-Arnaud C; Lasaponara S
    J Cogn Neurosci; 2020 Jun; 32(6):1046-1060. PubMed ID: 31967519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing the top-down contingent capture of attention for abrupt-onset cues: Evidence from cue-elicited N2pc.
    Goller F; Schoeberl T; Ansorge U
    Psychophysiology; 2020 Nov; 57(11):e13655. PubMed ID: 32790903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The time course of the effects of central and peripheral cues on visual processing: an event-related potentials study.
    Doallo S; Lorenzo-López L; Vizoso C; Rodríguez Holguín S; Amenedo E; Bará S; Cadaveira F
    Clin Neurophysiol; 2004 Jan; 115(1):199-210. PubMed ID: 14706489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altering spatial priority maps via statistical learning of target selection and distractor filtering.
    Ferrante O; Patacca A; Di Caro V; Della Libera C; Santandrea E; Chelazzi L
    Cortex; 2018 May; 102():67-95. PubMed ID: 29096874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding attention control and selection in visual spatial attention.
    Hong X; Bo K; Meyyappan S; Tong S; Ding M
    Hum Brain Mapp; 2020 Oct; 41(14):3900-3921. PubMed ID: 32542852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-modal cueing in audiovisual spatial attention.
    Blurton SP; Greenlee MW; Gondan M
    Atten Percept Psychophys; 2015 Oct; 77(7):2356-76. PubMed ID: 26001381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Top-down control of audiovisual search by bimodal search templates.
    Matusz PJ; Eimer M
    Psychophysiology; 2013 Oct; 50(10):996-1009. PubMed ID: 23834379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to inhibit a distractor location? Statistical learning versus active, top-down suppression.
    Wang B; Theeuwes J
    Atten Percept Psychophys; 2018 May; 80(4):860-870. PubMed ID: 29476331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Top-down knowledge surpasses selection history in influencing attentional guidance.
    Grüner M; Goller F; Ansorge U
    Atten Percept Psychophys; 2023 May; 85(4):985-1011. PubMed ID: 36694074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.