These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 37264745)
1. 3D Bioprinting of Neurovascular Tissue Modeling with Collagen-Based Low-Viscosity Composites. Wang S; Bai L; Hu X; Yao S; Hao Z; Zhou J; Li X; Lu H; He J; Wang L; Li D Adv Healthc Mater; 2023 Oct; 12(25):e2300004. PubMed ID: 37264745 [TBL] [Abstract][Full Text] [Related]
2. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035 [TBL] [Abstract][Full Text] [Related]
3. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Zhang J; Wehrle E; Vetsch JR; Paul GR; Rubert M; Müller R Biomed Mater; 2019 Sep; 14(6):065009. PubMed ID: 31426033 [TBL] [Abstract][Full Text] [Related]
4. Core-shell bioprinting of vascularized Taymour R; Chicaiza-Cabezas NA; Gelinsky M; Lode A Biofabrication; 2022 Sep; 14(4):. PubMed ID: 36070706 [No Abstract] [Full Text] [Related]
5. Embedded bioprinting for designer 3D tissue constructs with complex structural organization. Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360 [TBL] [Abstract][Full Text] [Related]
6. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259 [TBL] [Abstract][Full Text] [Related]
7. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
8. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. Zhuang P; Ng WL; An J; Chua CK; Tan LP PLoS One; 2019; 14(6):e0216776. PubMed ID: 31188827 [TBL] [Abstract][Full Text] [Related]
9. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs. Heo DN; Alioglu MA; Wu Y; Ozbolat V; Ayan B; Dey M; Kang Y; Ozbolat IT ACS Appl Mater Interfaces; 2020 May; 12(18):20295-20306. PubMed ID: 32274920 [TBL] [Abstract][Full Text] [Related]
10. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Rastogi P; Kandasubramanian B Biofabrication; 2019 Sep; 11(4):042001. PubMed ID: 31315105 [TBL] [Abstract][Full Text] [Related]
11. Bioprinting Cell-Laden Hydrogels for Studies of Epithelial Tissue Morphogenesis. Nerger BA; Nelson CM Methods Mol Biol; 2024; 2805():113-124. PubMed ID: 39008177 [TBL] [Abstract][Full Text] [Related]
12. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Izadifar M; Chapman D; Babyn P; Chen X; Kelly ME Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528 [TBL] [Abstract][Full Text] [Related]
13. Single-Step 3D Bioprinting of Alginate-Collagen Type I Hydrogel Fiber Rings to Promote Angiogenic Network Formation. Li YB; Rukhlova M; Zhang D; Nhan J; Sodja C; Bedford E; St-Pierre JP; Jezierski A Tissue Eng Part C Methods; 2024 Jul; 30(7):289-306. PubMed ID: 38946589 [TBL] [Abstract][Full Text] [Related]
14. A thermogelling organic-inorganic hybrid hydrogel with excellent printability, shape fidelity and cytocompatibility for 3D bioprinting. Hu C; Ahmad T; Haider MS; Hahn L; Stahlhut P; Groll J; Luxenhofer R Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34875631 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional printing of cell-laden microporous constructs using blended bioinks. Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214 [TBL] [Abstract][Full Text] [Related]
16. Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels. Li Z; Ramos A; Li MC; Li Z; Bhatta S; Jeyaseelan A; Li Y; Wu Q; Yao S; Xu J Biomed Phys Eng Express; 2020 May; 6(4):045009. PubMed ID: 33444270 [TBL] [Abstract][Full Text] [Related]
17. 3D bioprinting of complex channels within cell-laden hydrogels. Ji S; Almeida E; Guvendiren M Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink. Colosi C; Shin SR; Manoharan V; Massa S; Costantini M; Barbetta A; Dokmeci MR; Dentini M; Khademhosseini A Adv Mater; 2016 Jan; 28(4):677-84. PubMed ID: 26606883 [TBL] [Abstract][Full Text] [Related]
19. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels. Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330 [TBL] [Abstract][Full Text] [Related]
20. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]