These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37264784)

  • 41. The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms.
    Polzer S; Gasser TC; Swedenborg J; Bursa J
    Eur J Vasc Endovasc Surg; 2011 Apr; 41(4):467-73. PubMed ID: 21269846
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Predictive Analysis of Wall Stress in Abdominal Aortic Aneurysms Using a Neural Network Model.
    Rengarajan B; Patnaik SS; Finol EA
    J Biomech Eng; 2021 Dec; 143(12):. PubMed ID: 34318314
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations.
    Gasser TC; Auer M; Labruto F; Swedenborg J; Roy J
    Eur J Vasc Endovasc Surg; 2010 Aug; 40(2):176-85. PubMed ID: 20447844
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An approach for patient-specific multi-domain vascular mesh generation featuring spatially varying wall thickness modeling.
    Raut SS; Liu P; Finol EA
    J Biomech; 2015 Jul; 48(10):1972-81. PubMed ID: 25976018
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm.
    Raghavan ML; Vorp DA; Federle MP; Makaroun MS; Webster MW
    J Vasc Surg; 2000 Apr; 31(4):760-9. PubMed ID: 10753284
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: method and retrospective validation.
    Gasser TC; Nchimi A; Swedenborg J; Roy J; Sakalihasan N; Böckler D; Hyhlik-Dürr A
    Eur J Vasc Endovasc Surg; 2014 Mar; 47(3):288-95. PubMed ID: 24456739
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stress Analysis in AAA does not Predict Rupture Location Correctly in Patients with Intraluminal Thrombus.
    Lorandon F; Rinckenbach S; Settembre N; Steinmetz E; Mont LSD; Avril S
    Ann Vasc Surg; 2022 Feb; 79():279-289. PubMed ID: 34648863
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prestressing in finite deformation abdominal aortic aneurysm simulation.
    Gee MW; Reeps C; Eckstein HH; Wall WA
    J Biomech; 2009 Aug; 42(11):1732-9. PubMed ID: 19457489
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Abdominal aortic aneurysm: from clinical imaging to realistic replicas.
    de Galarreta SR; Aitor C; Antón R; Finol EA
    J Biomech Eng; 2014 Jan; 136(1):014502. PubMed ID: 24190650
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms.
    Speelman L; Bohra A; Bosboom EM; Schurink GW; van de Vosse FN; Makaorun MS; Vorp DA
    J Biomech Eng; 2007 Feb; 129(1):105-9. PubMed ID: 17227104
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanical role of intraluminal thrombus in aneurysm growth: A computational study.
    Horvat N; Virag L; Karšaj I
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1819-1832. PubMed ID: 34148166
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gene Expression Profiling in Abdominal Aortic Aneurysms After Finite Element Rupture Risk Assessment.
    Erhart P; Schiele S; Ginsbach P; Grond-Ginsbach C; Hakimi M; Böckler D; Lorenzo-Bermejo J; Dihlmann S
    J Endovasc Ther; 2017 Dec; 24(6):861-869. PubMed ID: 28856923
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rupture risk in abdominal aortic aneurysms: A realistic assessment of the explicit GPU approach.
    Strbac V; Pierce DM; Rodriguez-Vila B; Vander Sloten J; Famaey N
    J Biomech; 2017 May; 56():1-9. PubMed ID: 28318603
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Correlation of Intraluminal Thrombus Deposition, Biomechanics, and Hemodynamics with Surface Growth and Rupture in Abdominal Aortic Aneurysm-Application in a Clinical Paradigm.
    Metaxa E; Tzirakis K; Kontopodis N; Ioannou CV; Papaharilaou Y
    Ann Vasc Surg; 2018 Jan; 46():357-366. PubMed ID: 28887252
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms.
    Truijers M; Pol JA; Schultzekool LJ; van Sterkenburg SM; Fillinger MF; Blankensteijn JD
    Eur J Vasc Endovasc Surg; 2007 Apr; 33(4):401-7. PubMed ID: 17137809
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Importance of material model in wall stress prediction in abdominal aortic aneurysms.
    Polzer S; Gasser TC; Bursa J; Staffa R; Vlachovsky R; Man V; Skacel P
    Med Eng Phys; 2013 Sep; 35(9):1282-9. PubMed ID: 23434615
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture.
    Boyd AJ; Kuhn DC; Lozowy RJ; Kulbisky GP
    J Vasc Surg; 2016 Jun; 63(6):1613-9. PubMed ID: 25752691
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Morphology of Abdominal Aortic Aneurysms and Correlation with Biomechanical Tests of Aneurysmal Wall Fragments.
    Constantin BD; Simão da Silva E; Lessard S; Kauffman C; Soulez G
    Ann Vasc Surg; 2024 Mar; 100():101-109. PubMed ID: 38110080
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three-dimensional sensitivity assessment of thoracic aortic aneurysm wall stress: a probabilistic finite-element study.
    Celi S; Berti S
    Eur J Cardiothorac Surg; 2014 Mar; 45(3):467-75. PubMed ID: 23921161
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index.
    Polzer S; Gasser TC
    J R Soc Interface; 2015 Dec; 12(113):20150852. PubMed ID: 26631334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.