BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37265024)

  • 1. Evaporative Dry Powders Derived from Cellulose Nanofiber Organogels to Fully Recover Inherent High Viscosity and High Transparency of Water Dispersion.
    Yagyu H; Kasuga T; Ogata N; Koga H; Daicho K; Goi Y; Nogi M
    Macromol Rapid Commun; 2023 Sep; 44(17):e2300186. PubMed ID: 37265024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward millimeter thick cellulose nanofiber/epoxy laminates with good transparency and high flexural strength.
    Lee K; Kwon G; Jeon Y; Jeon S; Hong C; Choung JW; You J
    Carbohydr Polym; 2022 Sep; 291():119514. PubMed ID: 35698324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrodeposition of cellulose nanofibers as an efficient dehydration method.
    Kasuga T; Li C; Mizui A; Ishioka S; Koga H; Nogi M
    Carbohydr Polym; 2024 Sep; 340():122310. PubMed ID: 38858010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of salad dressings via the use of economically prepared cellulose nanofiber from lime residue as a functional ingredient.
    Hongho C; Chiewchan N; Devahastin S
    J Food Sci; 2023 Mar; 88(3):1101-1113. PubMed ID: 36717377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spray-dried cellulose nanofibers as novel tablet excipient.
    Kolakovic R; Peltonen L; Laaksonen T; Putkisto K; Laukkanen A; Hirvonen J
    AAPS PharmSciTech; 2011 Dec; 12(4):1366-73. PubMed ID: 22005956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production.
    Balea A; Sanchez-Salvador JL; Monte MC; Merayo N; Negro C; Blanco A
    Molecules; 2019 May; 24(9):. PubMed ID: 31075959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tackling the challenge of drying and redispersion of cellulose nanofibrils via membrane-facilitated liquid phase exchange.
    Onyianta AJ; Xu G; Etale A; Eloi JC; Eichhorn SJ
    Carbohydr Polym; 2023 Aug; 314():120943. PubMed ID: 37173032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multifunctional biogenic films and coatings from synergistic aqueous dispersion of wood-derived suberin and cellulose nanofibers.
    Qasim U; Sirviö JA; Suopajärvi T; Hu L; Pratiwi FW; Lin MKTH; Anghelescu-Hakala A; Ronkainen VP; Xu C; Liimatainen H
    Carbohydr Polym; 2024 Aug; 338():122218. PubMed ID: 38763705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green Preparation of Durian Rind-Based Cellulose Nanofiber and Its Application in Aerogel.
    Xing H; Fei Y; Cheng J; Wang C; Zhang J; Niu C; Fu Q; Cheng J; Lu L
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orally Disintegrating Tablet Manufacture via Direct Powder Compression Using Cellulose Nanofiber as a Functional Additive.
    Nakamura S; Fukai T; Sakamoto T
    AAPS PharmSciTech; 2021 Dec; 23(1):37. PubMed ID: 34950985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose nanocrystal-coated TEMPO-oxidized cellulose nanofiber films for high performance all-cellulose nanocomposites.
    Kwon G; Lee K; Kim D; Jeon Y; Kim UJ; You J
    J Hazard Mater; 2020 Nov; 398():123100. PubMed ID: 32768841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-intensity ultrasound-assisted formation of cellulose nanofiber scaffold with low and high lignin content and their cytocompatibility with gingival fibroblast cells.
    Huerta RR; Silva EK; Ekaette I; El-Bialy T; Saldaña MDA
    Ultrason Sonochem; 2020 Jun; 64():104759. PubMed ID: 31948850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of cellulose nanocrystal and cellulose nanofiber on the properties of pumpkin starch-based composite films.
    Zhang L; Zhao J; Zhang Y; Li F; Jiao X; Li Q
    Int J Biol Macromol; 2021 Dec; 192():444-451. PubMed ID: 34606791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content.
    Azeredo HM; Mattoso LH; Avena-Bustillos RJ; Filho GC; Munford ML; Wood D; McHugh TH
    J Food Sci; 2010; 75(1):N1-7. PubMed ID: 20492188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils.
    Nie S; Zhang K; Lin X; Zhang C; Yan D; Liang H; Wang S
    Carbohydr Polym; 2018 Feb; 181():1136-1142. PubMed ID: 29253942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Ishii D; Saito T; Isogai A
    Biomacromolecules; 2011 Mar; 12(3):548-50. PubMed ID: 21261299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-crosslinked cellulose nanofiber based bioplastic films for practical applications.
    Lee K; Jeon Y; Kim D; Kwon G; Kim UJ; Hong C; Choung JW; You J
    Carbohydr Polym; 2021 May; 260():117817. PubMed ID: 33712161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocellulose Grades with Different Morphologies and Surface Modification as Additives for Waterborne Epoxy Coatings.
    Samyn P; Cosemans P
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38675014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic viscosity recovery of electrospinning solution for stabilizing elongated ultrafine polymer nanofiber by TEMPO-CNF.
    Higashi S; Hirai T; Matsubara M; Yoshida H; Beniya A
    Sci Rep; 2020 Aug; 10(1):13427. PubMed ID: 32778719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing the Amount of Catalyst in TEMPO-Oxidized Cellulose Nanofibers: Effect on Properties and Cost.
    Serra A; González I; Oliver-Ortega H; Tarrès Q; Delgado-Aguilar M; Mutjé P
    Polymers (Basel); 2017 Oct; 9(11):. PubMed ID: 30965860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.