BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37265024)

  • 21. Rice Husk-Derived Cellulose Nanofibers: A Potential Sensor for Water-Soluble Gases.
    Shahi N; Lee E; Min B; Kim DJ
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34203163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clearly transparent and air-permeable nanopaper with porous structures consisting of TEMPO-oxidized cellulose nanofibers.
    Huang Y; Kasuga T; Nogi M; Koga H
    RSC Adv; 2023 Jul; 13(31):21494-21501. PubMed ID: 37465580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and characterization of cellulose nanofiber cryogels as oil absorbents and enzymatic lipolysis scaffolds.
    Sato T; Mori S; Septiyanti M; Nakamura H; Hongo C; Matsumoto T; Nishino T
    Carbohydr Res; 2020 Jul; 493():108020. PubMed ID: 32407824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect.
    Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN
    Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlling the transparency and rheology of nanocellulose gels with the extent of carboxylation.
    Mendoza DJ; Hossain L; Browne C; Raghuwanshi VS; Simon GP; Garnier G
    Carbohydr Polym; 2020 Oct; 245():116566. PubMed ID: 32718648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Composites of waterborne polyurethane and cellulose nanofibers for 3D printing and bioapplications.
    Chen RD; Huang CF; Hsu SH
    Carbohydr Polym; 2019 May; 212():75-88. PubMed ID: 30832883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of hemicellulose hydrolysate addition on the dehydration and redispersion characteristic of cellulose nanofibrils.
    Kim J; Kim J; Jung S; Yun H; Won S; Choi IG; Kwak HW
    Carbohydr Polym; 2024 Jun; 334():122036. PubMed ID: 38553234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose.
    Saito T; Kimura S; Nishiyama Y; Isogai A
    Biomacromolecules; 2007 Aug; 8(8):2485-91. PubMed ID: 17630692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil.
    Carrillo CA; Nypelö TE; Rojas OJ
    J Colloid Interface Sci; 2015 May; 445():166-173. PubMed ID: 25617611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using Cellulose Nanofibers and Its Palm Oil Pickering Emulsion as Fat Substitutes in Emulsified Sausage.
    Wang Y; Wang W; Jia H; Gao G; Wang X; Zhang X; Wang Y
    J Food Sci; 2018 Jun; 83(6):1740-1747. PubMed ID: 29745986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of nanocellulose on in vitro digestion of whey protein isolate.
    Liu L; Kong F
    Carbohydr Polym; 2019 Apr; 210():399-411. PubMed ID: 30732777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers.
    Carrillo CA; Nypelö T; Rojas OJ
    Soft Matter; 2016 Mar; 12(10):2721-8. PubMed ID: 26876673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Can TEMPO-Oxidized Cellulose Nanofibers Be Used as Additives in Bio-Based Building Materials? A Preliminary Study on Earth Plasters.
    Gallo Stampino P; Riva L; Caruso M; Rahman IA; Elegir G; Bussini D; Marti-Rujas J; Dotelli G; Punta C
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superinsulating nanocellulose aerogels: Effect of density and nanofiber alignment.
    Sivaraman D; Siqueira G; Maurya AK; Zhao S; Koebel MM; Nyström G; Lattuada M; Malfait WJ
    Carbohydr Polym; 2022 Sep; 292():119675. PubMed ID: 35725170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simple preparation of chitosan nanofibers from dry chitosan powder by the Star Burst system.
    Dutta AK; Kawamoto N; Sugino G; Izawa H; Morimoto M; Saimoto H; Ifuku S
    Carbohydr Polym; 2013 Sep; 97(2):363-7. PubMed ID: 23911458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Valuable aramid/cellulose nanofibers derived from recycled resources for reinforcing carbon fiber/phenolic composites.
    Ma S; Li H; Li C; Li B; Fei J; Wen Y
    Carbohydr Polym; 2022 Sep; 292():119712. PubMed ID: 35725188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High Performance PA 6/Cellulose Nanocomposites in the Interest of Industrial Scale Melt Processing.
    Sridhara PK; Vilaseca F
    Polymers (Basel); 2021 May; 13(9):. PubMed ID: 34066567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clearly Transparent Nanopaper from Highly Concentrated Cellulose Nanofiber Dispersion Using Dilution and Sonication.
    Kasuga T; Isobe N; Yagyu H; Koga H; Nogi M
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29439544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile strategy for improvement properties of whey protein isolate/walnut oil bio-packaging films: Using modified cellulose nanofibers.
    Samadani F; Behzad T; Enayati MS
    Int J Biol Macromol; 2019 Oct; 139():858-866. PubMed ID: 31398405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transparent nanocellulose paper-based biodegradable colorimetric nerve agent detectors.
    Jeong E; Kim JK; Jin J; Lee HI
    Carbohydr Polym; 2022 Nov; 295():119845. PubMed ID: 35989000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.