These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 37265254)
1. Interaction matters: Bottom-up driver interdependencies alter the projected response of phytoplankton communities to climate change. Seifert M; Nissen C; Rost B; Vogt M; Völker C; Hauck J Glob Chang Biol; 2023 Aug; 29(15):4234-4258. PubMed ID: 37265254 [TBL] [Abstract][Full Text] [Related]
2. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification. Eggers SL; Lewandowska AM; Barcelos E Ramos J; Blanco-Ameijeiras S; Gallo F; Matthiessen B Glob Chang Biol; 2014 Mar; 20(3):713-23. PubMed ID: 24115206 [TBL] [Abstract][Full Text] [Related]
3. Phytoplankton thermal trait parameterization alters community structure and biogeochemical processes in a modeled ocean. Anderson SI; Fronda C; Barton AD; Clayton S; Rynearson TA; Dutkiewicz S Glob Chang Biol; 2024 Jan; 30(1):e17093. PubMed ID: 38273480 [TBL] [Abstract][Full Text] [Related]
4. Meta-analysis of multiple driver effects on marine phytoplankton highlights modulating role of pCO Seifert M; Rost B; Trimborn S; Hauck J Glob Chang Biol; 2020 Dec; 26(12):6787-6804. PubMed ID: 32905664 [TBL] [Abstract][Full Text] [Related]
5. Decadal changes in global phytoplankton compositions influenced by biogeochemical variables. Mishra RK; Jena B; Venkataramana V; Sreerag A; Soares MA; AnilKumar N Environ Res; 2022 Apr; 206():112546. PubMed ID: 34902377 [TBL] [Abstract][Full Text] [Related]
6. Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore Emiliania huxleyi. Feng Y; Roleda MY; Armstrong E; Summerfield TC; Law CS; Hurd CL; Boyd PW Glob Chang Biol; 2020 Oct; 26(10):5630-5645. PubMed ID: 32597547 [TBL] [Abstract][Full Text] [Related]
7. Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean. Jabre LJ; Allen AE; McCain JSP; McCrow JP; Tenenbaum N; Spackeen JL; Sipler RE; Green BR; Bronk DA; Hutchins DA; Bertrand EM Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301906 [TBL] [Abstract][Full Text] [Related]
8. Biological responses of the marine diatom Chaetoceros socialis to changing environmental conditions: A laboratory experiment. Li X; Roevros N; Dehairs F; Chou L PLoS One; 2017; 12(11):e0188615. PubMed ID: 29190826 [TBL] [Abstract][Full Text] [Related]
9. Consistent trophic amplification of marine biomass declines under climate change. Kwiatkowski L; Aumont O; Bopp L Glob Chang Biol; 2019 Jan; 25(1):218-229. PubMed ID: 30295401 [TBL] [Abstract][Full Text] [Related]
10. Elemental stoichiometry of the key calcifying marine phytoplankton Emiliania huxleyi under ocean climate change: A meta-analysis. Sheward RM; Liefer JD; Irwin AJ; Finkel ZV Glob Chang Biol; 2023 Aug; 29(15):4259-4278. PubMed ID: 37279257 [TBL] [Abstract][Full Text] [Related]
11. Warming and Ocean Acidification Effects on Phytoplankton--From Species Shifts to Size Shifts within Species in a Mesocosm Experiment. Sommer U; Paul C; Moustaka-Gouni M PLoS One; 2015; 10(5):e0125239. PubMed ID: 25993440 [TBL] [Abstract][Full Text] [Related]
12. Thermal trait variation may buffer Southern Ocean phytoplankton from anthropogenic warming. Bishop IW; Anderson SI; Collins S; Rynearson TA Glob Chang Biol; 2022 Oct; 28(19):5755-5767. PubMed ID: 35785458 [TBL] [Abstract][Full Text] [Related]
13. Impact of Growth Phase, Pigment Adaptation, and Climate Change Conditions on the Cellular Pigment and Carbon Content of Fifty-One Phytoplankton Isolates. Neeley AR; Lomas MW; Mannino A; Thomas C; Vandermeulen R J Phycol; 2022 Oct; 58(5):669-690. PubMed ID: 35844156 [TBL] [Abstract][Full Text] [Related]
14. Biomass changes and trophic amplification of plankton in a warmer ocean. Chust G; Allen JI; Bopp L; Schrum C; Holt J; Tsiaras K; Zavatarelli M; Chifflet M; Cannaby H; Dadou I; Daewel U; Wakelin SL; Machu E; Pushpadas D; Butenschon M; Artioli Y; Petihakis G; Smith C; Garçon V; Goubanova K; Le Vu B; Fach BA; Salihoglu B; Clementi E; Irigoien X Glob Chang Biol; 2014 Jul; 20(7):2124-39. PubMed ID: 24604761 [TBL] [Abstract][Full Text] [Related]
15. Short- and long-term conditioning of a temperate marine diatom community to acidification and warming. Tatters AO; Roleda MY; Schnetzer A; Fu F; Hurd CL; Boyd PW; Caron DA; Lie AA; Hoffmann LJ; Hutchins DA Philos Trans R Soc Lond B Biol Sci; 2013; 368(1627):20120437. PubMed ID: 23980240 [TBL] [Abstract][Full Text] [Related]
16. The need for unrealistic experiments in global change biology. Collins S; Whittaker H; Thomas MK Curr Opin Microbiol; 2022 Aug; 68():102151. PubMed ID: 35525129 [TBL] [Abstract][Full Text] [Related]
17. Phytoplankton life strategies, phenological shifts and climate change in the North Atlantic Ocean from 1850 to 2100. Kléparski L; Beaugrand G; Edwards M; Ostle C Glob Chang Biol; 2023 Jul; 29(13):3833-3849. PubMed ID: 37026559 [TBL] [Abstract][Full Text] [Related]
18. Impacts of Zn and Cu enrichment under ocean acidification scenario on a phytoplankton community from tropical upwelling system. Sharma D; Biswas H; Silori S; Bandyopadhyay D; Shaik AU; Cardinal D; Mandeng-Yogo M; Ray D Mar Environ Res; 2020 Mar; 155():104880. PubMed ID: 32072984 [TBL] [Abstract][Full Text] [Related]
19. The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores. Balch WM Ann Rev Mar Sci; 2018 Jan; 10():71-98. PubMed ID: 29298138 [TBL] [Abstract][Full Text] [Related]
20. Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean. Dutkiewicz S; Boyd PW; Riebesell U Glob Chang Biol; 2021 Mar; 27(6):1196-1213. PubMed ID: 33342048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]