These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 37265335)

  • 1. Understanding the Rhodopsin Worldview Through Atomic Force Microscopy (AFM): Structure, Stability, and Activity Studies.
    Senapati S; Park PS
    Chem Rec; 2023 Oct; 23(10):e202300113. PubMed ID: 37265335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the Nanodomain Organization of Rhodopsin in Native Membranes by Atomic Force Microscopy.
    Senapati S; Park PS
    Methods Mol Biol; 2019; 1886():61-74. PubMed ID: 30374862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiating between Inactive and Active States of Rhodopsin by Atomic Force Microscopy in Native Membranes.
    Senapati S; Poma AB; Cieplak M; Filipek S; Park PSH
    Anal Chem; 2019 Jun; 91(11):7226-7235. PubMed ID: 31074606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes.
    Whited AM; Park PS
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):26-34. PubMed ID: 25305340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The G protein-coupled receptor rhodopsin in the native membrane.
    Fotiadis D; Liang Y; Filipek S; Saperstein DA; Engel A; Palczewski K
    FEBS Lett; 2004 Apr; 564(3):281-288. PubMed ID: 15111110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.
    Rakshit T; Senapati S; Sinha S; Whited AM; Park PS
    PLoS One; 2015; 10(10):e0141114. PubMed ID: 26492040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution atomic force microscopy imaging of rhodopsin in rod outer segment disk membranes.
    Bosshart PD; Engel A; Fotiadis D
    Methods Mol Biol; 2015; 1271():189-203. PubMed ID: 25697525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptations in rod outer segment disc membranes in response to environmental lighting conditions.
    Rakshit T; Senapati S; Parmar VM; Sahu B; Maeda A; Park PS
    Biochim Biophys Acta Mol Cell Res; 2017 Oct; 1864(10):1691-1702. PubMed ID: 28645515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular organization of rhodopsin in rod photoreceptor cell membranes.
    Park PS
    Pflugers Arch; 2021 Sep; 473(9):1361-1376. PubMed ID: 33591421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The supramolecular structure of the GPCR rhodopsin in solution and native disc membranes.
    Suda K; Filipek S; Palczewski K; Engel A; Fotiadis D
    Mol Membr Biol; 2004; 21(6):435-46. PubMed ID: 15764373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of reduced rhodopsin expression on the structure of rod outer segment disc membranes.
    Rakshit T; Park PS
    Biochemistry; 2015 May; 54(18):2885-94. PubMed ID: 25881629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors.
    Fotiadis D; Jastrzebska B; Philippsen A; Müller DJ; Palczewski K; Engel A
    Curr Opin Struct Biol; 2006 Apr; 16(2):252-9. PubMed ID: 16567090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dietary docosahexaenoic acid on rhodopsin content and packing in photoreceptor cell membranes.
    Senapati S; Gragg M; Samuels IS; Parmar VM; Maeda A; Park PS
    Biochim Biophys Acta Biomembr; 2018 Jun; 1860(6):1403-1413. PubMed ID: 29626443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New views on phototransduction from atomic force microscopy and single molecule force spectroscopy on native rods.
    Maity S; Ilieva N; Laio A; Torre V; Mazzolini M
    Sci Rep; 2017 Sep; 7(1):12000. PubMed ID: 28931892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential adaptations in rod outer segment disc membranes in different models of congenital stationary night blindness.
    Senapati S; Park PS
    Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183396. PubMed ID: 32533975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic, energetic, and mechanical differences between dark-state rhodopsin and opsin.
    Kawamura S; Gerstung M; Colozo AT; Helenius J; Maeda A; Beerenwinkel N; Park PS; Müller DJ
    Structure; 2013 Mar; 21(3):426-37. PubMed ID: 23434406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function.
    Jastrzebska B; Debinski A; Filipek S; Palczewski K
    Prog Lipid Res; 2011 Jul; 50(3):267-77. PubMed ID: 21435354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes.
    Liang Y; Fotiadis D; Filipek S; Saperstein DA; Palczewski K; Engel A
    J Biol Chem; 2003 Jun; 278(24):21655-21662. PubMed ID: 12663652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of native membrane-bound rhodopsin on biosensor surfaces.
    Minic J; Grosclaude J; Aioun J; Persuy MA; Gorojankina T; Salesse R; Pajot-Augy E; Hou Y; Helali S; Jaffrezic-Renault N; Bessueille F; Errachid A; Gomila G; Ruiz O; Samitier J
    Biochim Biophys Acta; 2005 Aug; 1724(3):324-32. PubMed ID: 15927400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conservation of molecular interactions stabilizing bovine and mouse rhodopsin.
    Kawamura S; Colozo AT; Müller DJ; Park PS
    Biochemistry; 2010 Dec; 49(49):10412-20. PubMed ID: 21038881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.