These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 37265543)

  • 1. An insight on sources and biodegradation of bioplastics: a review.
    Pooja N; Chakraborty I; Rahman MH; Mazumder N
    3 Biotech; 2023 Jul; 13(7):220. PubMed ID: 37265543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The degradation of single-use plastics and commercially viable bioplastics in the environment: A review.
    Idris SN; Amelia TSM; Bhubalan K; Lazim AMM; Zakwan NAMA; Jamaluddin MI; Santhanam R; Amirul AA; Vigneswari S; Ramakrishna S
    Environ Res; 2023 Aug; 231(Pt 1):115988. PubMed ID: 37105296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review.
    Polman EMN; Gruter GM; Parsons JR; Tietema A
    Sci Total Environ; 2021 Jan; 753():141953. PubMed ID: 32896737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of bioplastics in natural environments.
    Emadian SM; Onay TT; Demirel B
    Waste Manag; 2017 Jan; 59():526-536. PubMed ID: 27742230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algal-based bioplastics: global trends in applied research, technologies, and commercialization.
    Mogany T; Bhola V; Bux F
    Environ Sci Pollut Res Int; 2024 Jun; 31(26):38022-38044. PubMed ID: 38787471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and assessment of the biodegradation and ecotoxicity of xylan- and starch-based bioplastics.
    Abe MM; Branciforti MC; Nallin Montagnolli R; Marin Morales MA; Jacobus AP; Brienzo M
    Chemosphere; 2022 Jan; 287(Pt 3):132290. PubMed ID: 34562707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives.
    Andreeßen C; Steinbüchel A
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):143-157. PubMed ID: 30397765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential Perspectives and Sustainability of Bioplastics Developed from Horticulture.
    Saini P; Iqbal U; Ahmed M
    Recent Adv Food Nutr Agric; 2023 Feb; ():. PubMed ID: 36803753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What Are "Bioplastics"? Defining Renewability, Biosynthesis, Biodegradability, and Biocompatibility.
    Lackner M; Mukherjee A; Koller M
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From trash to treasure: review on upcycling of fruit and vegetable wastes into starch based bioplastics.
    Das S; Kalyani MI
    Prep Biochem Biotechnol; 2023; 53(7):713-727. PubMed ID: 36565171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of novel bioplastics made of starch, polyhydroxyurethanes and cellulose nanocrystals in soil environment.
    Ghasemlou M; Daver F; Murdoch BJ; Ball AS; Ivanova EP; Adhikari B
    Sci Total Environ; 2022 Apr; 815():152684. PubMed ID: 34995611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine-derived biopolymers as potential bioplastics, an eco-friendly alternative.
    Tennakoon P; Chandika P; Yi M; Jung WK
    iScience; 2023 Apr; 26(4):106404. PubMed ID: 37034997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leads and hurdles to sustainable microbial bioplastic production.
    Varghese S; Dhanraj ND; Rebello S; Sindhu R; Binod P; Pandey A; Jisha MS; Awasthi MK
    Chemosphere; 2022 Oct; 305():135390. PubMed ID: 35728665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioplastics from waste biomass of marine and poultry industries.
    Arif A; Azeem F; Rasul I; Siddique MH; Zubair M; Muneer F; Zaheer W; Nadeem H
    J Biosci; 2023; 48():. PubMed ID: 37021675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a Circular Economy of Plastics: An Evaluation of the Systematic Transition to a New Generation of Bioplastics.
    Melchor-Martínez EM; Macías-Garbett R; Alvarado-Ramírez L; Araújo RG; Sosa-Hernández JE; Ramírez-Gamboa D; Parra-Arroyo L; Alvarez AG; Monteverde RPB; Cazares KAS; Reyes-Mayer A; Yáñez Lino M; Iqbal HMN; Parra-Saldívar R
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of planet friendly bioplastics using renewable carbon source.
    Jain R; Tiwari A
    J Environ Health Sci Eng; 2015; 13():11. PubMed ID: 25717378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatible and Biodegradable 3D Printing from Bioplastics: A Review.
    Andanje MN; Mwangi JW; Mose BR; Carrara S
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel, robust mechanical strength, and naturally degradable double crosslinking starch-based bioplastics for practical applications.
    Xie D; Zhang R; Zhang C; Yang S; Xu Z; Song Y
    Int J Biol Macromol; 2023 Dec; 253(Pt 4):126959. PubMed ID: 37739289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradability of bioplastics in different aquatic environments: A systematic review.
    Lavagnolo MC; Poli V; Zampini AM; Grossule V
    J Environ Sci (China); 2024 Aug; 142():169-181. PubMed ID: 38527882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The greenhouse gas emissions and fossil energy requirement of bioplastics from cradle to gate of a biomass refinery.
    Yu J; Chen LX
    Environ Sci Technol; 2008 Sep; 42(18):6961-6. PubMed ID: 18853816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.