These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 37265604)

  • 1. Thermo-induced physically crosslinked polypeptide-based block copolymer hydrogels for biomedical applications.
    Zhao D; Rong Y; Li D; He C; Chen X
    Regen Biomater; 2023; 10():rbad039. PubMed ID: 37265604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) block copolymer.
    Shim WS; Kim JH; Park H; Kim K; Chan Kwon I; Lee DS
    Biomaterials; 2006 Oct; 27(30):5178-85. PubMed ID: 16797693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery.
    He C; Kim SW; Lee DS
    J Control Release; 2008 May; 127(3):189-207. PubMed ID: 18321604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crucial Impact of Residue Chirality on the Gelation Process and Biodegradability of Thermoresponsive Polypeptide Hydrogels.
    Li D; Zhao D; He C; Chen X
    Biomacromolecules; 2021 Sep; 22(9):3992-4003. PubMed ID: 34464095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Polymer Topology and Residue Chirality on Biodegradability of Polypeptide Hydrogels.
    Li D; Shi S; Zhao D; Rong Y; Zhou Y; Ding J; He C; Chen X
    ACS Biomater Sci Eng; 2022 Feb; 8(2):626-637. PubMed ID: 35090109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectable Thermo-Responsive Peptide Hydrogels and Its Enzyme Triggered Dynamic Self-Assembly.
    Yin B; Wang R; Guo Y; Li L; Hu X
    Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEG-based thermosensitive and biodegradable hydrogels.
    Shi J; Yu L; Ding J
    Acta Biomater; 2021 Jul; 128():42-59. PubMed ID: 33857694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications.
    Darge HF; Andrgie AT; Tsai HC; Lai JY
    Int J Biol Macromol; 2019 Jul; 133():545-563. PubMed ID: 31004630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH- and Temperature-responsive Hydrogels Based on Tertiary Amine-modified Polypeptides for Stimuli-responsive Drug Delivery.
    Lin Z; Ding J; Chen X; He C
    Chem Asian J; 2023 Apr; 18(8):e202300021. PubMed ID: 36856525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapidly Thermoreversible and Biodegradable Polypeptide Hydrogels with Sol-Gel-Sol Transition Dependent on Subtle Manipulation of Side Groups.
    Zhao D; Li D; Quan F; Zhou Y; Zhang Z; Chen X; He C
    Biomacromolecules; 2021 Aug; 22(8):3522-3533. PubMed ID: 34297548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pH- and temperature-responsive bioresorbable injectable hydrogel based on polypeptide block copolymers for the sustained delivery of proteins in vivo.
    Turabee MH; Thambi T; Duong HTT; Jeong JH; Lee DS
    Biomater Sci; 2018 Feb; 6(3):661-671. PubMed ID: 29423489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications.
    Alexander A; Ajazuddin ; Khan J; Saraf S; Saraf S
    Eur J Pharm Biopharm; 2014 Nov; 88(3):575-85. PubMed ID: 25092423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG-PCL-PEG.
    Feng Z; Zhao J; Li Y; Xu S; Zhou J; Zhang J; Deng L; Dong A
    Biomater Sci; 2016 Oct; 4(10):1493-502. PubMed ID: 27546028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Overview of Injectable Thermo-Responsive Hydrogels and Advances in their Biomedical Applications.
    Ávila-Salas F; Durán-Lara EF
    Curr Med Chem; 2020; 27(34):5773-5789. PubMed ID: 31161984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture.
    Liu H; Liu J; Qi C; Fang Y; Zhang L; Zhuo R; Jiang X
    Acta Biomater; 2016 Apr; 35():228-37. PubMed ID: 26911882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels.
    Li Z; Zhang Z; Liu KL; Ni X; Li J
    Biomacromolecules; 2012 Dec; 13(12):3977-89. PubMed ID: 23167676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair.
    Liu H; Cheng Y; Chen J; Chang F; Wang J; Ding J; Chen X
    Acta Biomater; 2018 Jun; 73():103-111. PubMed ID: 29684624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A supramolecular host-guest interaction-mediated injectable hydrogel system with enhanced stability and sustained protein release.
    Lee SY; Jeon SI; Sim SB; Byun Y; Ahn CH
    Acta Biomater; 2021 Sep; 131():286-301. PubMed ID: 34246803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermosensitive block copolymer hydrogels based on poly(ɛ-caprolactone) and polyethylene glycol for biomedical applications: state of the art and future perspectives.
    Boffito M; Sirianni P; Di Rienzo AM; Chiono V
    J Biomed Mater Res A; 2015 Mar; 103(3):1276-90. PubMed ID: 24912941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioresorbable polypeptide-based comb-polymers efficiently improves the stability and pharmacokinetics of proteins in vivo.
    Turabee MH; Thambi T; Lym JS; Lee DS
    Biomater Sci; 2017 Mar; 5(4):837-848. PubMed ID: 28287223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.