BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37265738)

  • 1. Experiment-guided molecular simulations define a heterogeneous structural ensemble for the
    Marasco M; Kirkpatrick J; Carlomagno T; Hub JS; Anselmi M
    Chem Sci; 2023 May; 14(21):5743-5755. PubMed ID: 37265738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomistic ensemble of active SHP2 phosphatase.
    Anselmi M; Hub JS
    Commun Biol; 2023 Dec; 6(1):1289. PubMed ID: 38129686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphopeptide binding to the N-SH2 domain of tyrosine phosphatase SHP2 correlates with the unzipping of its central β-sheet.
    Marasco M; Kirkpatrick J; Carlomagno T; Hub JS; Anselmi M
    Comput Struct Biotechnol J; 2024 Dec; 23():1169-1180. PubMed ID: 38510972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discriminating between competing models for the allosteric regulation of oncogenic phosphatase SHP2 by characterizing its active state.
    Calligari P; Santucci V; Stella L; Bocchinfuso G
    Comput Struct Biotechnol J; 2021; 19():6125-6139. PubMed ID: 34900129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural mechanism associated with domain opening in gain-of-function mutations in SHP2 phosphatase.
    Darian E; Guvench O; Yu B; Qu CK; MacKerell AD
    Proteins; 2011 May; 79(5):1573-88. PubMed ID: 21365683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, function, and pathogenesis of SHP2 in developmental disorders and tumorigenesis.
    Huang WQ; Lin Q; Zhuang X; Cai LL; Ruan RS; Lu ZX; Tzeng CM
    Curr Cancer Drug Targets; 2014; 14(6):567-88. PubMed ID: 25039348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The loops of the N-SH2 binding cleft do not serve as allosteric switch in SHP2 activation.
    Anselmi M; Hub JS
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33888588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphotyrosine couples peptide binding and SHP2 activation via a dynamic allosteric network.
    Marasco M; Kirkpatrick J; Nanna V; Sikorska J; Carlomagno T
    Comput Struct Biotechnol J; 2021; 19():2398-2415. PubMed ID: 34025932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein tyrosine phosphatase SHP2/PTPN11 mistargeting as a consequence of SH2-domain point mutations associated with Noonan Syndrome and leukemia.
    Müller PJ; Rigbolt KT; Paterok D; Piehler J; Vanselow J; Lasonder E; Andersen JS; Schaper F; Sobota RM
    J Proteomics; 2013 Jun; 84():132-47. PubMed ID: 23584145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing Allostery in PTPN11 SH2 Domains from MD Simulations.
    Anselmi M; Hub JS
    Methods Mol Biol; 2023; 2705():59-75. PubMed ID: 37668969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial constraints on the recognition of phosphoproteins by the tandem SH2 domains of the phosphatase SH-PTP2.
    Eck MJ; Pluskey S; Trüb T; Harrison SC; Shoelson SE
    Nature; 1996 Jan; 379(6562):277-80. PubMed ID: 8538796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains.
    Sha F; Gencer EB; Georgeon S; Koide A; Yasui N; Koide S; Hantschel O
    Proc Natl Acad Sci U S A; 2013 Sep; 110(37):14924-9. PubMed ID: 23980151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphotyrosines 627 and 659 of Gab1 constitute a bisphosphoryl tyrosine-based activation motif (BTAM) conferring binding and activation of SHP2.
    Cunnick JM; Mei L; Doupnik CA; Wu J
    J Biol Chem; 2001 Jun; 276(26):24380-7. PubMed ID: 11323411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of Folding and Binding of the N-Terminal SH2 Domain from SHP2.
    Bonetti D; Troilo F; Toto A; Travaglini-Allocatelli C; Brunori M; Gianni S
    J Phys Chem B; 2018 Dec; 122(49):11108-11114. PubMed ID: 30047735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the Allosteric Mechanism of Src Homology-2 Domain-Containing Protein Tyrosine Phosphatase 2 (SHP2) by Molecular Dynamics Simulations.
    Wang Q; Zhao WC; Fu XQ; Zheng QC
    Front Chem; 2020; 8():597495. PubMed ID: 33330386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZAP-70 binding specificity to T cell receptor tyrosine-based activation motifs: the tandem SH2 domains of ZAP-70 bind distinct tyrosine-based activation motifs with varying affinity.
    Isakov N; Wange RL; Burgess WH; Watts JD; Aebersold R; Samelson LE
    J Exp Med; 1995 Jan; 181(1):375-80. PubMed ID: 7528772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure and NMR studies of the apo SH2 domains of ZAP-70: two bikes rather than a tandem.
    Folmer RH; Geschwindner S; Xue Y
    Biochemistry; 2002 Dec; 41(48):14176-84. PubMed ID: 12450381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Mechanism of Recognition of Gab2 by the N-SH2 Domain of SHP2.
    Visconti L; Malagrinò F; Pagano L; Toto A
    Life (Basel); 2020 Jun; 10(6):. PubMed ID: 32545165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining folding and binding properties of the C-terminal SH2 domain of SHP2.
    Nardella C; Malagrinò F; Pagano L; Rinaldo S; Gianni S; Toto A
    Protein Sci; 2021 Dec; 30(12):2385-2395. PubMed ID: 34605082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis of gain-of-function LEOPARD syndrome-associated SHP2 mutations.
    Yu ZH; Zhang RY; Walls CD; Chen L; Zhang S; Wu L; Liu S; Zhang ZY
    Biochemistry; 2014 Jul; 53(25):4136-51. PubMed ID: 24935154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.