These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37265990)

  • 41. Human Stem Cell Based Tissue Engineering for
    Kabir W; Di Bella C; Jo I; Gould D; Choong PFM
    Tissue Eng Part B Rev; 2021 Feb; 27(1):74-93. PubMed ID: 32729380
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Systematic review of preclinical and clinical studies on scaffold use in knee ligament regeneration.
    Caudwell M; Crowley C; Khan WS; Wong JM
    Curr Stem Cell Res Ther; 2015; 10(1):11-8. PubMed ID: 25012742
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models.
    El-Rashidy AA; Roether JA; Harhaus L; Kneser U; Boccaccini AR
    Acta Biomater; 2017 Oct; 62():1-28. PubMed ID: 28844964
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three dimensional printed nanostructure biomaterials for bone tissue engineering.
    Marew T; Birhanu G
    Regen Ther; 2021 Dec; 18():102-111. PubMed ID: 34141834
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D-printed hydroxyapatite scaffolds for bone tissue engineering: A systematic review in experimental animal studies.
    Avanzi IR; Parisi JR; Souza A; Cruz MA; Martignago CCS; Ribeiro DA; Braga ARC; Renno AC
    J Biomed Mater Res B Appl Biomater; 2023 Jan; 111(1):203-219. PubMed ID: 35906778
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent advances in aptamer applications for analytical biochemistry.
    Zon G
    Anal Biochem; 2022 May; 644():113894. PubMed ID: 32763306
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preclinical Studies on Biomaterial Scaffold use in Knee Ligament Regeneration: A Systematic Review.
    Archer DE; Mafi R; Mafi P; Khan WS
    Curr Stem Cell Res Ther; 2018; 13(8):691-701. PubMed ID: 30091417
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Scaffold-based and Scaffold-free Strategies in Dental Pulp Regeneration.
    Dissanayaka WL; Zhang C
    J Endod; 2020 Sep; 46(9S):S81-S89. PubMed ID: 32950199
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality.
    Raftery RM; Woods B; Marques ALP; Moreira-Silva J; Silva TH; Cryan SA; Reis RL; O'Brien FJ
    Acta Biomater; 2016 Oct; 43():160-169. PubMed ID: 27402181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Scaffold-based Drug Delivery for Cartilage Tissue Regeneration.
    Shalumon KT; Chen JP
    Curr Pharm Des; 2015; 21(15):1979-90. PubMed ID: 25732662
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects.
    Eichholz KF; Freeman FE; Pitacco P; Nulty J; Ahern D; Burdis R; Browe DC; Garcia O; Hoey DA; Kelly DJ
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35947963
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D-Bioprinted Difunctional Scaffold for In Situ Cartilage Regeneration Based on Aptamer-Directed Cell Recruitment and Growth Factor-Enhanced Cell Chondrogenesis.
    Yang Z; Zhao T; Gao C; Cao F; Li H; Liao Z; Fu L; Li P; Chen W; Sun Z; Jiang S; Tian Z; Tian G; Zha K; Pan T; Li X; Sui X; Yuan Z; Liu S; Guo Q
    ACS Appl Mater Interfaces; 2021 May; 13(20):23369-23383. PubMed ID: 33979130
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The surrounding tissue contributes to smooth muscle cells' regeneration and vascularization of small diameter vascular grafts.
    Liu J; Qin Y; Wu Y; Sun Z; Li B; Jing H; Zhang C; Li C; Leng X; Wang Z; Kong D
    Biomater Sci; 2019 Feb; 7(3):914-925. PubMed ID: 30511718
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Strategies for Bone Regeneration: From Graft to Tissue Engineering.
    Battafarano G; Rossi M; De Martino V; Marampon F; Borro L; Secinaro A; Del Fattore A
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498786
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Additive Manufacturing of Caffeic Acid-Inspired Mineral Trioxide Aggregate/Poly-ε-Caprolactone Scaffold for Regulating Vascular Induction and Osteogenic Regeneration of Dental Pulp Stem Cells.
    Tien N; Lee JJ; Lee AK; Lin YH; Chen JX; Kuo TY; Shie MY
    Cells; 2021 Oct; 10(11):. PubMed ID: 34831134
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bone reconstruction: from bioceramics to tissue engineering.
    El-Ghannam A
    Expert Rev Med Devices; 2005 Jan; 2(1):87-101. PubMed ID: 16293032
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel unstructured scaffold based on 4EBP1 enables the functional display of a wide range of bioactive peptides.
    See HY; Lane DP
    J Mol Biol; 2010 Dec; 404(5):819-31. PubMed ID: 20932973
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selection of DNA Aptamers Recognizing EpCAM-Positive Prostate Cancer by Cell-SELEX for in vitro and in vivo MR Imaging.
    Zhong J; Ding J; Deng L; Xiang Y; Liu D; Zhang Y; Chen X; Yang Q
    Drug Des Devel Ther; 2021; 15():3985-3996. PubMed ID: 34584404
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.