These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 37265990)
61. Aptamer Technology and Its Applications in Bone Diseases. Liu X; Hu J; Ning Y; Xu H; Cai H; Yang A; Shi Z; Li Z Cell Transplant; 2023; 32():9636897221144949. PubMed ID: 36591965 [TBL] [Abstract][Full Text] [Related]
63. Surface biofunctionalization of β-TCP blocks using aptamer 74 for bone tissue engineering. Ardjomandi N; Huth J; Stamov DR; Henrich A; Klein C; Wendel HP; Reinert S; Alexander D Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():267-275. PubMed ID: 27287122 [TBL] [Abstract][Full Text] [Related]
64. Molecular Engineering of Aptamer Self-Assemblies Increases Xia F; He A; Zhao H; Sun Y; Duan Q; Abbas SJ; Liu J; Xiao Z; Tan W ACS Nano; 2022 Jan; 16(1):169-179. PubMed ID: 34935348 [TBL] [Abstract][Full Text] [Related]
65. Engineered Aptamers to Probe Molecular Interactions on the Cell Surface. Batool S; Bhandari S; George S; Okeoma P; Van N; Zümrüt HE; Mallikaratchy P Biomedicines; 2017 Aug; 5(3):. PubMed ID: 28850067 [TBL] [Abstract][Full Text] [Related]
66. Dimerization of an aptamer generated from Ligand-guided selection (LIGS) yields a high affinity scaffold against B-cells. Batool S; Argyropoulos KV; Azad R; Okeoma P; Zumrut H; Bhandari S; Dekhang R; Mallikaratchy PR Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):232-240. PubMed ID: 30342154 [TBL] [Abstract][Full Text] [Related]
67. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. Lv F; Wang J; Xu P; Han Y; Ma H; Xu H; Chen S; Chang J; Ke Q; Liu M; Yi Z; Wu C Acta Biomater; 2017 Sep; 60():128-143. PubMed ID: 28713016 [TBL] [Abstract][Full Text] [Related]
68. Repairing Avascular Meniscal Lesions by Recruiting Endogenous Targeted Cells Through Bispecific Synovial-Meniscal Aptamers. Chen Z; Deng XH; Jiang C; Wang JS; Li WP; Zhu KL; Li YH; Song B; Zhang ZZ Am J Sports Med; 2023 Apr; 51(5):1177-1193. PubMed ID: 36917829 [TBL] [Abstract][Full Text] [Related]
69. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Zeimaran E; Pourshahrestani S; Fathi A; Razak NABA; Kadri NA; Sheikhi A; Baino F Acta Biomater; 2021 Dec; 136():1-36. PubMed ID: 34562661 [TBL] [Abstract][Full Text] [Related]
70. Inflammation-mediated matrix remodeling of extracellular matrix-mimicking biomaterials in tissue engineering and regenerative medicine. Xu M; Su T; Jin X; Li Y; Yao Y; Liu K; Chen K; Lu F; He Y Acta Biomater; 2022 Oct; 151():106-117. PubMed ID: 35970482 [TBL] [Abstract][Full Text] [Related]
71. Incorporation of Magnesium Ions into an Aptamer-Functionalized ECM Bioactive Scaffold for Articular Cartilage Regeneration. Liao Z; Fu L; Li P; Wu J; Yuan X; Ning C; Ding Z; Sui X; Liu S; Guo Q ACS Appl Mater Interfaces; 2023 May; 15(19):22944-22958. PubMed ID: 37134259 [TBL] [Abstract][Full Text] [Related]
72. Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells. Nie X; Wang DA Biomater Sci; 2018 Oct; 6(11):2798-2811. PubMed ID: 30229775 [TBL] [Abstract][Full Text] [Related]
73. Urethra-inspired biomimetic scaffold: A therapeutic strategy to promote angiogenesis for urethral regeneration in a rabbit model. Wang B; Lv X; Li Z; Zhang M; Yao J; Sheng N; Lu M; Wang H; Chen S Acta Biomater; 2020 Jan; 102():247-258. PubMed ID: 31734410 [TBL] [Abstract][Full Text] [Related]
74. Supercritical CO Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054 [TBL] [Abstract][Full Text] [Related]
75. A Difunctional Regeneration Scaffold for Knee Repair based on Aptamer-Directed Cell Recruitment. Hu X; Wang Y; Tan Y; Wang J; Liu H; Wang Y; Yang S; Shi M; Zhao S; Zhang Y; Yuan Q Adv Mater; 2017 Apr; 29(15):. PubMed ID: 28185322 [TBL] [Abstract][Full Text] [Related]
76. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration. Ding T; Kang W; Li J; Yu L; Ge S J Nanobiotechnology; 2021 Aug; 19(1):247. PubMed ID: 34404409 [TBL] [Abstract][Full Text] [Related]
77. [Preparation of dual-functional composite magnetic nanomaterials modified with different metals/aptamers and their performance in exosome enrichment]. Zhang W; Lu R; Zhang L Se Pu; 2021 Oct; 39(10):1128-1136. PubMed ID: 34505435 [TBL] [Abstract][Full Text] [Related]
78. Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. Suliman S; Xing Z; Wu X; Xue Y; Pedersen TO; Sun Y; Døskeland AP; Nickel J; Waag T; Lygre H; Finne-Wistrand A; Steinmüller-Nethl D; Krueger A; Mustafa K J Control Release; 2015 Jan; 197():148-57. PubMed ID: 25445698 [TBL] [Abstract][Full Text] [Related]
79. Periodontal regeneration - furcation defects: a systematic review from the AAP Regeneration Workshop. Avila-Ortiz G; De Buitrago JG; Reddy MS J Periodontol; 2015 Feb; 86(2 Suppl):S108-30. PubMed ID: 25644295 [TBL] [Abstract][Full Text] [Related]
80. Mesoporous Hydroxyapatite Nanoparticles Mediate the Release and Bioactivity of BMP-2 for Enhanced Bone Regeneration. Qiu Y; Xu X; Guo W; Zhao Y; Su J; Chen J ACS Biomater Sci Eng; 2020 Apr; 6(4):2323-2335. PubMed ID: 33455303 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]