These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 37266435)
1. Bioinformatics and Raman spectroscopy-based identification of key pathways and genes enabling differentiation between acute myeloid leukemia and T cell acute lymphoblastic leukemia. Liang H; Kong X; Cao Z; Wang H; Liu E; Sun F; Qi J; Zhang Q; Zhou Y Front Immunol; 2023; 14():1194353. PubMed ID: 37266435 [TBL] [Abstract][Full Text] [Related]
2. Identification of the key genes and microRNAs in adult acute myeloid leukemia with FLT3 mutation by bioinformatics analysis. Chen S; Chen Y; Zhu Z; Tan H; Lu J; Qin P; Xu L Int J Med Sci; 2020; 17(9):1269-1280. PubMed ID: 32547322 [No Abstract] [Full Text] [Related]
3. MicroRNA-363-3p promote the development of acute myeloid leukemia with RUNX1 mutation by targeting SPRYD4 and FNDC3B. Chen Y; Chen S; Lu J; Yuan D; He L; Qin P; Tan H; Xu L Medicine (Baltimore); 2021 May; 100(18):e25807. PubMed ID: 33950983 [TBL] [Abstract][Full Text] [Related]
4. Key candidate genes and pathways in T lymphoblastic leukemia/lymphoma identified by bioinformatics and serological analyses. Ren Y; Liang H; Huang Y; Miao Y; Li R; Qiang J; Wu L; Qi J; Li Y; Xia Y; Huang L; Wang S; Kong X; Zhou Y; Zhang Q; Zhu G Front Immunol; 2024; 15():1341255. PubMed ID: 38464517 [TBL] [Abstract][Full Text] [Related]
5. Identification of new markers discriminating between myeloid and lymphoid acute leukemia. Haouas H; Haouas S; Uzan G; Hafsia A Hematology; 2010 Aug; 15(4):193-203. PubMed ID: 20670477 [TBL] [Abstract][Full Text] [Related]
6. Exploring Prognostic Biomarkers of Acute Myeloid Leukemia to Determine Its Most Effective Drugs from the FDA-Approved List through Molecular Docking and Dynamic Simulation. Alom MM; Faruqe MO; Molla MKI; Rahman MM Biomed Res Int; 2023; 2023():1946703. PubMed ID: 37359050 [TBL] [Abstract][Full Text] [Related]
7. Bioinformatics Analysis Identifies Key Genes and Pathways in Acute Myeloid Leukemia Associated with DNMT3A Mutation. Chen S; Chen Y; Lu J; Yuan D; He L; Tan H; Xu L Biomed Res Int; 2020; 2020():9321630. PubMed ID: 33299888 [TBL] [Abstract][Full Text] [Related]
8. Identification of Key Genes and Pathways Associated with RUNX1 Mutations in Acute Myeloid Leukemia Using Bioinformatics Analysis. Zhu F; Huang R; Li J; Liao X; Huang Y; Lai Y Med Sci Monit; 2018 Oct; 24():7100-7108. PubMed ID: 30289875 [TBL] [Abstract][Full Text] [Related]
9. Identification of intrinsically disordered regions in hub genes of acute myeloid leukemia: A bioinformatics approach. Ameri M; Alipour M; Madihi M; Nezafat N Biotechnol Appl Biochem; 2022 Dec; 69(6):2304-2322. PubMed ID: 34812529 [TBL] [Abstract][Full Text] [Related]
10. Identification of potential therapeutic target genes, key miRNAs and mechanisms in acute myeloid leukemia based on bioinformatics analysis. Zhao Y; Zhang X; Zhao Y; Kong D; Qin F; Sun J; Dong Y Med Oncol; 2015 May; 32(5):152. PubMed ID: 25832863 [TBL] [Abstract][Full Text] [Related]
11. Integrated bioinformatic analysis of mitochondrial metabolism-related genes in acute myeloid leukemia. Tong X; Zhou F Front Immunol; 2023; 14():1120670. PubMed ID: 37138869 [TBL] [Abstract][Full Text] [Related]
12. Identification of prognostic genes in the acute myeloid leukemia immune microenvironment based on TCGA data analysis. Yan H; Qu J; Cao W; Liu Y; Zheng G; Zhang E; Cai Z Cancer Immunol Immunother; 2019 Dec; 68(12):1971-1978. PubMed ID: 31650199 [TBL] [Abstract][Full Text] [Related]
13. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma. Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538 [TBL] [Abstract][Full Text] [Related]
14. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data. Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618 [TBL] [Abstract][Full Text] [Related]
15. Bioinformatics analysis of gene expression profiles in childhood B-precursor acute lymphoblastic leukemia. Li J; Zhai X; Wang H; Qian X; Miao H; Zhu X Hematology; 2015 Aug; 20(7):377-83. PubMed ID: 25431969 [TBL] [Abstract][Full Text] [Related]
16. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis. Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250 [TBL] [Abstract][Full Text] [Related]
17. Identification of Key Pathways and Genes in Anaplastic Thyroid Carcinoma via Integrated Bioinformatics Analysis. Hu S; Liao Y; Chen L Med Sci Monit; 2018 Sep; 24():6438-6448. PubMed ID: 30213925 [TBL] [Abstract][Full Text] [Related]
19. [Prognostic implications and functional enrichment analysis of LTB4R in patients with acute myeloid leukemia]. Zhang X; Zhang X; Liu P; Liu K; Li W; Chen Q; Ma W Nan Fang Yi Ke Da Xue Xue Bao; 2022 Mar; 42(3):309-320. PubMed ID: 35426793 [TBL] [Abstract][Full Text] [Related]
20. Construction of prognostic risk prediction model based on high-throughput sequencing expression profile data in childhood acute myeloid leukemia. Niu P; Yao B; Wei L; Zhu H; Fang C; Zhao Y Blood Cells Mol Dis; 2019 Jul; 77():43-50. PubMed ID: 30954792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]