These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 37266604)
21. Three-dimensional assessment of the asymptomatic and post-stroke shoulder: intra-rater test-retest reliability and within-subject repeatability of the palpation and digitization approach. Pain LAM; Baker R; Sohail QZ; Richardson D; Zabjek K; Mogk JPM; Agur AMR Disabil Rehabil; 2019 Jul; 41(15):1826-1834. PubMed ID: 29566570 [No Abstract] [Full Text] [Related]
22. Validity and Reliability of a Novel Smartphone Tele-Assessment Solution for Quantifying Hip Range of Motion. Marshall CJ; El-Ansary D; Pranata A; Ganderton C; O'Donnell J; Takla A; Tran P; Wickramasinghe N; Tirosh O Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365852 [TBL] [Abstract][Full Text] [Related]
23. Mathematical Analysis and Motion Capture System Utilization Method for Standardization Evaluation of Tracking Objectivity of 6-DOF Arm Structure for Rehabilitation Training Exercise Therapy Robot. Seol J; Yoon K; Kim KG Diagnostics (Basel); 2022 Dec; 12(12):. PubMed ID: 36553186 [TBL] [Abstract][Full Text] [Related]
24. Reliability of a human pose tracking algorithm for measuring upper limb joints: comparison with photography-based goniometry. Fan J; Gu F; Lv L; Zhang Z; Zhu C; Qi J; Wang H; Liu X; Yang J; Zhu Q BMC Musculoskelet Disord; 2022 Sep; 23(1):877. PubMed ID: 36131313 [TBL] [Abstract][Full Text] [Related]
25. How do digital range of motion measurement devices 'measure-up' to traditional goniometry in assessing shoulder range of motion? A systematic review and meta-analysis. Shepherd J; Hansjee S; Divall P; Raval P; Singh HP Shoulder Elbow; 2024 Jul; 16(4):363-381. PubMed ID: 39318409 [TBL] [Abstract][Full Text] [Related]
26. Reliability and validity of smartphone applications to measure the spinal range of motion: A systematic review. Nuhmani S; Khan MH; Kachanathu SJ; Bari MA; Abualait TS; Muaidi QI Expert Rev Med Devices; 2021 Sep; 18(9):893-901. PubMed ID: 34334079 [No Abstract] [Full Text] [Related]
27. Concurrent validity of a custom computer vision algorithm for measuring lumbar spine motion from RGB-D camera depth data. Ramos WC; Beange KHE; Graham RB Med Eng Phys; 2021 Oct; 96():22-28. PubMed ID: 34565549 [TBL] [Abstract][Full Text] [Related]
28. The concurrent validity and reliability of virtual reality to measure shoulder flexion and scaption range of motion. Dejaco B; de Jong LD; van Goor H; Staal JB; Stolwijk N; Lewis J Physiotherapy; 2023 Sep; 120():95-102. PubMed ID: 37429093 [TBL] [Abstract][Full Text] [Related]
29. Reliability and agreement of Azure Kinect and Kinect v2 depth sensors in the shoulder joint range of motion estimation. Özsoy U; Yıldırım Y; Karaşin S; Şekerci R; Süzen LB J Shoulder Elbow Surg; 2022 Oct; 31(10):2049-2056. PubMed ID: 35562032 [TBL] [Abstract][Full Text] [Related]
30. Reliability and validity varies among smartphone apps for range of motion measurements of the lower extremity: a systematic review. Hahn S; Kröger I; Willwacher S; Augat P Biomed Tech (Berl); 2021 Dec; 66(6):537-555. PubMed ID: 34768316 [TBL] [Abstract][Full Text] [Related]
31. An Optoelectronic System for Measuring the Range of Motion in Healthy Volunteers: A Cross-Sectional Study. Medina-Mirapeix F; Martín-San Agustín R; Cánovas-Ambit G; García-Vidal JA; Gacto-Sánchez M; Escolar-Reina P Medicina (Kaunas); 2019 Aug; 55(9):. PubMed ID: 31443368 [No Abstract] [Full Text] [Related]
32. Intra- and inter-reliability of fleximetry in individuals with chronic shoulder pain. da Silva IH; da Silva Junior JM; Santos-de-Araújo AD; de Paula Gomes CAF; da Silva Souza C; de Souza Matias PHVA; Dibai-Filho AV Phys Ther Sport; 2018 Jul; 32():115-120. PubMed ID: 29778827 [TBL] [Abstract][Full Text] [Related]
33. Healthcare applications of single camera markerless motion capture: a scoping review. Scott B; Seyres M; Philp F; Chadwick EK; Blana D PeerJ; 2022; 10():e13517. PubMed ID: 35642200 [TBL] [Abstract][Full Text] [Related]
34. Reliability and validity of clinically accessible smartphone applications to measure joint range of motion: A systematic review. Keogh JWL; Cox A; Anderson S; Liew B; Olsen A; Schram B; Furness J PLoS One; 2019; 14(5):e0215806. PubMed ID: 31067247 [TBL] [Abstract][Full Text] [Related]
35. Effectiveness of aerobic exercise on upper limb function following breast cancer treatment: a systematic review and meta-analysis. Yang Y; Gu D; Qian Y; Wang H; Chai X Ann Palliat Med; 2021 Mar; 10(3):3396-3403. PubMed ID: 33752433 [TBL] [Abstract][Full Text] [Related]
36. A webcam-based machine learning approach for three-dimensional range of motion evaluation. Wang XM; Smith DT; Zhu Q PLoS One; 2023; 18(10):e0293178. PubMed ID: 37871043 [TBL] [Abstract][Full Text] [Related]
37. Within-day reliability of shoulder range of motion measurement with a smartphone. Shin SH; Ro du H; Lee OS; Oh JH; Kim SH Man Ther; 2012 Aug; 17(4):298-304. PubMed ID: 22421186 [TBL] [Abstract][Full Text] [Related]
38. The measurement of collaboration within healthcare settings: a systematic review of measurement properties of instruments. Walters SJ; Stern C; Robertson-Malt S JBI Database System Rev Implement Rep; 2016 Apr; 14(4):138-97. PubMed ID: 27532315 [TBL] [Abstract][Full Text] [Related]
39. Measurement properties of smartphone applications for the measurement of neck range of motion: a systematic review and meta analyses. Elgueta-Cancino E; Rice K; Abichandani D; Falla D BMC Musculoskelet Disord; 2022 Feb; 23(1):138. PubMed ID: 35144583 [TBL] [Abstract][Full Text] [Related]
40. Inter-rater reliability for measurement of passive physiological range of motion of upper extremity joints is better if instruments are used: a systematic review. van de Pol RJ; van Trijffel E; Lucas C J Physiother; 2010; 56(1):7-17. PubMed ID: 20500132 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]