These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37266707)

  • 1. What we imagine learning from watching others: how motor imagery modulates competency perceptions resulting from the repeated observation of a juggling action.
    Kraeutner SN; Karlinsky A; Besler Z; Welsh TN; Hodges NJ
    Psychol Res; 2023 Nov; 87(8):2583-2593. PubMed ID: 37266707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor imagery combined with action observation training optimized for individual motor skills further improves motor skills close to a plateau.
    Aoyama T; Kaneko F; Kohno Y
    Hum Mov Sci; 2020 Oct; 73():102683. PubMed ID: 32949991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action observation and motor imagery in performance of complex movements: evidence from EEG and kinematics analysis.
    Gonzalez-Rosa JJ; Natali F; Tettamanti A; Cursi M; Velikova S; Comi G; Gatti R; Leocani L
    Behav Brain Res; 2015 Mar; 281():290-300. PubMed ID: 25532912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined action observation and motor imagery: An intervention to combat the neural and behavioural deficits associated with developmental coordination disorder.
    Scott MW; Wood G; Holmes PS; Williams J; Marshall B; Wright DJ
    Neurosci Biobehav Rev; 2021 Aug; 127():638-646. PubMed ID: 34022280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of physical training versus combined action observation and motor imagery in conjunction with physical training on upper-extremity performance.
    Sakaguchi Y; Yamasaki S
    Somatosens Mot Res; 2021 Dec; 38(4):366-372. PubMed ID: 34645365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined action observation and motor imagery facilitates visuomotor adaptation in children with developmental coordination disorder.
    Marshall B; Wright DJ; Holmes PS; Williams J; Wood G
    Res Dev Disabil; 2020 Mar; 98():103570. PubMed ID: 31918039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor imagery alone drives corticospinal excitability during concurrent action observation and motor imagery.
    Meers R; Nuttall HE; Vogt S
    Cortex; 2020 May; 126():322-333. PubMed ID: 32092497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time course of changes in corticospinal excitability induced by motor imagery during action observation combined with peripheral nerve electrical stimulation.
    Yasui T; Yamaguchi T; Tanabe S; Tatemoto T; Takahashi Y; Kondo K; Kawakami M
    Exp Brain Res; 2019 Mar; 237(3):637-645. PubMed ID: 30536148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulus specificity in combined action observation and motor imagery of typing.
    Woodrow-Hill C; Gowen E; Vogt S; Edmonds E; Poliakoff E
    Q J Exp Psychol (Hove); 2024 Apr; ():17470218241241502. PubMed ID: 38482583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of hand motor skill performance induced by motor practice combined with matched or mismatched hand posture motor imagery.
    Meng HJ; Zhang LL; Luo SS; Cao N; Zhang J; Pi YL
    Physiol Behav; 2020 Oct; 225():113084. PubMed ID: 32687923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor imagery during action observation enhances automatic imitation in children with and without developmental coordination disorder.
    Scott MW; Emerson JR; Dixon J; Tayler MA; Eaves DL
    J Exp Child Psychol; 2019 Jul; 183():242-260. PubMed ID: 30921604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor imagery during action observation enhances imitation of everyday rhythmical actions in children with and without developmental coordination disorder.
    Scott MW; Emerson JR; Dixon J; Tayler MA; Eaves DL
    Hum Mov Sci; 2020 Jun; 71():102620. PubMed ID: 32452437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining motor imagery with action observation training does not lead to a greater autonomic nervous system response than motor imagery alone during simple and functional movements: a randomized controlled trial.
    Cuenca-Martínez F; Suso-Martí L; Grande-Alonso M; Paris-Alemany A; La Touche R
    PeerJ; 2018; 6():e5142. PubMed ID: 30002975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movement related sensory feedback is not necessary for learning to execute a motor skill.
    Ingram TGJ; Solomon JP; Westwood DA; Boe SG
    Behav Brain Res; 2019 Feb; 359():135-142. PubMed ID: 30392851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor learning without physical practice: The effects of combined action observation and motor imagery practice on cup-stacking speed.
    Binks JA; Wilson CJ; Van Schaik P; Eaves DL
    Psychol Sport Exerc; 2023 Sep; 68():102468. PubMed ID: 37665909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain activity during observation and motor imagery of different balance tasks: an fMRI study.
    Taube W; Mouthon M; Leukel C; Hoogewoud HM; Annoni JM; Keller M
    Cortex; 2015 Mar; 64():102-14. PubMed ID: 25461711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-specific equivalence of brain activity on motor imagery during action observation and action execution.
    Chen J; Kan W; Liu Y; Hu X; Wu T; Zou Y; Liu H; Yang K
    Int J Neurosci; 2021 Jun; 131(6):599-608. PubMed ID: 32228346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor imagery while viewing self-finger movements facilitates the excitability of spinal motor neurons.
    Bunno Y; Suzuki T
    Exp Brain Res; 2020 Sep; 238(9):2077-2086. PubMed ID: 32648024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG and behavioural correlates of different forms of motor imagery during action observation in rhythmical actions.
    Eaves DL; Behmer LP; Vogt S
    Brain Cogn; 2016 Jul; 106():90-103. PubMed ID: 27266395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle-specific movement-phase-dependent modulation of corticospinal excitability during upper-limb motor execution and motor imagery combined with virtual action observation.
    Suzuki Y; Kaneko N; Sasaki A; Tanaka F; Nakazawa K; Nomura T; Milosevic M
    Neurosci Lett; 2021 Jun; 755():135907. PubMed ID: 33887382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.