These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 37267134)
1. Evaluation of a Vibrotactile Biofeedback System Targeting Stance Time Symmetry Ratio of Individuals With Lower-Limb Amputation: A Pilot Study. Escamilla-Nunez R; Gouda A; Andrysek J IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2581-2590. PubMed ID: 37267134 [TBL] [Abstract][Full Text] [Related]
2. Exploration of Vibrotactile Biofeedback Strategies to Induce Stance Time Asymmetries. Escamilla-Nunez R; Sivasambu H; Andrysek J Can Prosthet Orthot J; 2022; 5(1):36744. PubMed ID: 37614481 [TBL] [Abstract][Full Text] [Related]
3. The Short-Term Effects of Rhythmic Vibrotactile and Auditory Biofeedback on the Gait of Individuals After Weight-Induced Asymmetry. Michelini A; Sivasambu H; Andrysek J Can Prosthet Orthot J; 2022; 5(1):36223. PubMed ID: 37614474 [TBL] [Abstract][Full Text] [Related]
4. A Study of Biofeedback Gait Training in Cerebral Stroke Patients in the Early Recovery Phase with Stance Phase as Target Parameter. Skvortsov DV; Kaurkin SN; Ivanova GE Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770524 [TBL] [Abstract][Full Text] [Related]
5. A Wearable Vibrotactile Biofeedback System Targeting Gait Symmetry of Lower-limb Prosthetic Users. Escamilla-Nunez R; Michelini A; Andrysek J Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3281-3284. PubMed ID: 33018705 [TBL] [Abstract][Full Text] [Related]
6. Effects of extended stance time on a powered knee prosthesis and gait symmetry on the lateral control of balance during walking in individuals with unilateral amputation. Brandt A; Huang HH J Neuroeng Rehabil; 2019 Nov; 16(1):151. PubMed ID: 31783759 [TBL] [Abstract][Full Text] [Related]
7. Task-oriented biofeedback to improve gait in individuals with chronic stroke: motor learning approach. Jonsdottir J; Cattaneo D; Recalcati M; Regola A; Rabuffetti M; Ferrarin M; Casiraghi A Neurorehabil Neural Repair; 2010 Jun; 24(5):478-85. PubMed ID: 20053951 [TBL] [Abstract][Full Text] [Related]
8. Biofeedback Systems for Gait Rehabilitation of Individuals with Lower-Limb Amputation: A Systematic Review. Escamilla-Nunez R; Michelini A; Andrysek J Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183338 [TBL] [Abstract][Full Text] [Related]
9. Increased Symmetry of Lower-Limb Amputees Walking With Concurrent Bilateral Vibrotactile Feedback. Martini E; Cesini I; D'Abbraccio J; Arnetoli G; Doronzio S; Giffone A; Meoni B; Oddo CM; Vitiello N; Crea S IEEE Trans Neural Syst Rehabil Eng; 2021; 29():74-84. PubMed ID: 33125331 [TBL] [Abstract][Full Text] [Related]
10. A pilot study examining measures of balance and mobility in children with unilateral lower-limb amputation. Feick E; Hamilton PR; Luis M; Corbin M; Salback NM; Torres-Moreno R; Andrysek J Prosthet Orthot Int; 2016 Feb; 40(1):65-74. PubMed ID: 25515343 [TBL] [Abstract][Full Text] [Related]
11. Concepts of motor learning applied to a rehabilitation protocol using biofeedback to improve gait in a chronic stroke patient: an A-B system study with multiple gait analyses. Jonsdottir J; Cattaneo D; Regola A; Crippa A; Recalcati M; Rabuffetti M; Ferrarin M; Casiraghi A Neurorehabil Neural Repair; 2007; 21(2):190-4. PubMed ID: 17312094 [TBL] [Abstract][Full Text] [Related]
12. Effects of biofeedback on whole lower limb joint kinematics and external kinetics. Mulloy F; Irwin G; Mullineaux DR J Sports Sci; 2021 Oct; 39(19):2172-2179. PubMed ID: 34000964 [TBL] [Abstract][Full Text] [Related]
13. Comparison of mirror, raw video, and real-time visual biofeedback for training toe-out gait in individuals with knee osteoarthritis. Hunt MA; Takacs J; Hart K; Massong E; Fuchko K; Biegler J Arch Phys Med Rehabil; 2014 Oct; 95(10):1912-7. PubMed ID: 24910929 [TBL] [Abstract][Full Text] [Related]
14. Transtibial amputee gait during slope walking with the unity suspension system. Gholizadeh H; Lemaire ED; Sinitski EH Gait Posture; 2018 Sep; 65():205-212. PubMed ID: 30558933 [TBL] [Abstract][Full Text] [Related]
15. Impact on gait biomechanics of using an active variable impedance prosthetic knee. Williams MR; D'Andrea S; Herr HM J Neuroeng Rehabil; 2016 Jun; 13(1):54. PubMed ID: 27283318 [TBL] [Abstract][Full Text] [Related]
16. Intra-individual biomechanical effects of a non-microprocessor-controlled stance-yielding prosthetic knee during ramp descent in persons with unilateral transfemoral amputation. Okita Y; Yamasaki N; Nakamura T; Mita T; Kubo T; Mitsumoto A; Akune T Prosthet Orthot Int; 2019 Feb; 43(1):55-61. PubMed ID: 30051754 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical responses of young adults with unilateral transfemoral amputation using two types of mechanical stance control prosthetic knee joints. Andrysek J; García D; Rozbaczylo C; Alvarez-Mitchell C; Valdebenito R; Rotter K; Wright FV Prosthet Orthot Int; 2020 Oct; 44(5):314-322. PubMed ID: 32389076 [TBL] [Abstract][Full Text] [Related]
18. Changes in gait and plantar foot loading upon using vibrotactile wearable biofeedback system in patients with stroke. Ma CZ; Zheng YP; Lee WC Top Stroke Rehabil; 2018 Jan; 25(1):20-27. PubMed ID: 28950803 [TBL] [Abstract][Full Text] [Related]
19. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial. Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131 [TBL] [Abstract][Full Text] [Related]
20. Cross-Slope and Level Walking Strategies During Swing in Individuals With Lower Limb Amputation. Villa C; Loiret I; Langlois K; Bonnet X; Lavaste F; Fodé P; Pillet H Arch Phys Med Rehabil; 2017 Jun; 98(6):1149-1157. PubMed ID: 27832952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]