These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 37267150)

  • 1. mpwR: an R package for comparing performance of mass spectrometry-based proteomic workflows.
    Kardell O; Breimann S; Hauck SM
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37267150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. protti: an R package for comprehensive data analysis of peptide- and protein-centric bottom-up proteomics data.
    Quast JP; Schuster D; Picotti P
    Bioinform Adv; 2022; 2(1):vbab041. PubMed ID: 36699412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments.
    Choi M; Chang CY; Clough T; Broudy D; Killeen T; MacLean B; Vitek O
    Bioinformatics; 2014 Sep; 30(17):2524-6. PubMed ID: 24794931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. promor: a comprehensive R package for label-free proteomics data analysis and predictive modeling.
    Ranathunge C; Patel SS; Pinky L; Correll VL; Chen S; Semmes OJ; Armstrong RK; Combs CD; Nyalwidhe JO
    Bioinform Adv; 2023; 3(1):vbad025. PubMed ID: 36922981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. gwid: an R package and Shiny application for Genome-Wide analysis of IBD data.
    Mahmoudiandehkordi S; Maadooliat M; Schrodi SJ
    Bioinform Adv; 2024; 4(1):vbae115. PubMed ID: 39246385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iq: an R package to estimate relative protein abundances from ion quantification in DIA-MS-based proteomics.
    Pham TV; Henneman AA; Jimenez CR
    Bioinformatics; 2020 Apr; 36(8):2611-2613. PubMed ID: 31909781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MSLibrarian: Optimized Predicted Spectral Libraries for Data-Independent Acquisition Proteomics.
    Isaksson M; Karlsson C; Laurell T; Kirkeby A; Heusel M
    J Proteome Res; 2022 Feb; 21(2):535-546. PubMed ID: 35042333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob.
    Goeminne LJE; Gevaert K; Clement L
    J Proteomics; 2018 Jan; 171():23-36. PubMed ID: 28391044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. sfinx: an R package for the elimination of false positives from affinity purification-mass spectrometry datasets.
    Titeca K; Meysman P; Laukens K; Martens L; Tavernier J; Eyckerman S
    Bioinformatics; 2017 Jun; 33(12):1902-1904. PubMed ID: 28186257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Contaminants Matter: Building Universal Protein Contaminant Libraries for DDA and DIA Proteomics.
    Frankenfield AM; Ni J; Ahmed M; Hao L
    J Proteome Res; 2022 Sep; 21(9):2104-2113. PubMed ID: 35793413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensive and Accurate Benchmarking of DIA Acquisition Methods and Software Tools Using a Complex Proteomic Standard.
    Gotti C; Roux-Dalvai F; Joly-Beauparlant C; Mangnier L; Leclercq M; Droit A
    J Proteome Res; 2021 Oct; 20(10):4801-4814. PubMed ID: 34472865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. peakPantheR, an R package for large-scale targeted extraction and integration of annotated metabolic features in LC-MS profiling datasets.
    Wolfer AM; D S Correia G; Sands CJ; Camuzeaux S; Yuen AHY; Chekmeneva E; Takáts Z; Pearce JTM; Lewis MR
    Bioinformatics; 2021 Dec; 37(24):4886-4888. PubMed ID: 34125879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics.
    Brusniak MY; Bodenmiller B; Campbell D; Cooke K; Eddes J; Garbutt A; Lau H; Letarte S; Mueller LN; Sharma V; Vitek O; Zhang N; Aebersold R; Watts JD
    BMC Bioinformatics; 2008 Dec; 9():542. PubMed ID: 19087345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicenter Collaborative Study to Optimize Mass Spectrometry Workflows of Clinical Specimens.
    Kardell O; von Toerne C; Merl-Pham J; König AC; Blindert M; Barth TK; Mergner J; Ludwig C; Tüshaus J; Eckert S; Müller SA; Breimann S; Giesbertz P; Bernhardt AM; Schweizer L; Albrecht V; Teupser D; Imhof A; Kuster B; Lichtenthaler SF; Mann M; Cox J; Hauck SM
    J Proteome Res; 2024 Jan; 23(1):117-129. PubMed ID: 38015820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. aLFQ: an R-package for estimating absolute protein quantities from label-free LC-MS/MS proteomics data.
    Rosenberger G; Ludwig C; Röst HL; Aebersold R; Malmström L
    Bioinformatics; 2014 Sep; 30(17):2511-3. PubMed ID: 24753486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification.
    Beirnaert C; Meysman P; Vu TN; Hermans N; Apers S; Pieters L; Covaci A; Laukens K
    PLoS Comput Biol; 2018 Mar; 14(3):e1006018. PubMed ID: 29494588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DO-MS: Data-Driven Optimization of Mass Spectrometry Methods.
    Huffman RG; Chen A; Specht H; Slavov N
    J Proteome Res; 2019 Jun; 18(6):2493-2500. PubMed ID: 31081635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing strategies and software solutions for data-independent acquisition in mass spectrometry.
    Bilbao A; Varesio E; Luban J; Strambio-De-Castillia C; Hopfgartner G; Müller M; Lisacek F
    Proteomics; 2015 Mar; 15(5-6):964-80. PubMed ID: 25430050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MS-BID: a Java package for label-free LC-MS-based comparative proteomic analysis.
    Hwang D; Zhang N; Lee H; Yi E; Zhang H; Lee IY; Hood L; Aebersold R
    Bioinformatics; 2008 Nov; 24(22):2641-2. PubMed ID: 18805798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset.
    Ramus C; Hovasse A; Marcellin M; Hesse AM; Mouton-Barbosa E; Bouyssié D; Vaca S; Carapito C; Chaoui K; Bruley C; Garin J; Cianférani S; Ferro M; Van Dorssaeler A; Burlet-Schiltz O; Schaeffer C; Couté Y; Gonzalez de Peredo A
    J Proteomics; 2016 Jan; 132():51-62. PubMed ID: 26585461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.