These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 37267150)
1. mpwR: an R package for comparing performance of mass spectrometry-based proteomic workflows. Kardell O; Breimann S; Hauck SM Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37267150 [TBL] [Abstract][Full Text] [Related]
2. protti: an R package for comprehensive data analysis of peptide- and protein-centric bottom-up proteomics data. Quast JP; Schuster D; Picotti P Bioinform Adv; 2022; 2(1):vbab041. PubMed ID: 36699412 [TBL] [Abstract][Full Text] [Related]
3. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Choi M; Chang CY; Clough T; Broudy D; Killeen T; MacLean B; Vitek O Bioinformatics; 2014 Sep; 30(17):2524-6. PubMed ID: 24794931 [TBL] [Abstract][Full Text] [Related]
4. promor: a comprehensive R package for label-free proteomics data analysis and predictive modeling. Ranathunge C; Patel SS; Pinky L; Correll VL; Chen S; Semmes OJ; Armstrong RK; Combs CD; Nyalwidhe JO Bioinform Adv; 2023; 3(1):vbad025. PubMed ID: 36922981 [TBL] [Abstract][Full Text] [Related]
5. gwid: an R package and Shiny application for Genome-Wide analysis of IBD data. Mahmoudiandehkordi S; Maadooliat M; Schrodi SJ Bioinform Adv; 2024; 4(1):vbae115. PubMed ID: 39246385 [TBL] [Abstract][Full Text] [Related]
6. iq: an R package to estimate relative protein abundances from ion quantification in DIA-MS-based proteomics. Pham TV; Henneman AA; Jimenez CR Bioinformatics; 2020 Apr; 36(8):2611-2613. PubMed ID: 31909781 [TBL] [Abstract][Full Text] [Related]
8. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob. Goeminne LJE; Gevaert K; Clement L J Proteomics; 2018 Jan; 171():23-36. PubMed ID: 28391044 [TBL] [Abstract][Full Text] [Related]
9. sfinx: an R package for the elimination of false positives from affinity purification-mass spectrometry datasets. Titeca K; Meysman P; Laukens K; Martens L; Tavernier J; Eyckerman S Bioinformatics; 2017 Jun; 33(12):1902-1904. PubMed ID: 28186257 [TBL] [Abstract][Full Text] [Related]
10. Protein Contaminants Matter: Building Universal Protein Contaminant Libraries for DDA and DIA Proteomics. Frankenfield AM; Ni J; Ahmed M; Hao L J Proteome Res; 2022 Sep; 21(9):2104-2113. PubMed ID: 35793413 [TBL] [Abstract][Full Text] [Related]
11. Extensive and Accurate Benchmarking of DIA Acquisition Methods and Software Tools Using a Complex Proteomic Standard. Gotti C; Roux-Dalvai F; Joly-Beauparlant C; Mangnier L; Leclercq M; Droit A J Proteome Res; 2021 Oct; 20(10):4801-4814. PubMed ID: 34472865 [TBL] [Abstract][Full Text] [Related]
12. peakPantheR, an R package for large-scale targeted extraction and integration of annotated metabolic features in LC-MS profiling datasets. Wolfer AM; D S Correia G; Sands CJ; Camuzeaux S; Yuen AHY; Chekmeneva E; Takáts Z; Pearce JTM; Lewis MR Bioinformatics; 2021 Dec; 37(24):4886-4888. PubMed ID: 34125879 [TBL] [Abstract][Full Text] [Related]