These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37267546)

  • 1. Gate-Controlled Quantum Interference Effects in a Clean Single-Wall Carbon Nanotube p-n Junction.
    Deng X; Gong K; Wang Y; Liu Z; Jiang K; Kang N; Zhang Z
    Phys Rev Lett; 2023 May; 130(20):207002. PubMed ID: 37267546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aharonov-Bohm interference and beating in single-walled carbon-nanotube interferometers.
    Cao J; Wang Q; Rolandi M; Dai H
    Phys Rev Lett; 2004 Nov; 93(21):216803. PubMed ID: 15601048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetoconductance of carbon nanotube p-n junctions.
    Andreev AV
    Phys Rev Lett; 2007 Dec; 99(24):247204. PubMed ID: 18233479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetoresistance of nanoscale molecular devices based on Aharonov-Bohm interferometry.
    Hod O; Baer R; Rabani E
    J Phys Condens Matter; 2008 Sep; 20(38):383201. PubMed ID: 21693808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tunable Fabry-Pérot quantum Hall interferometer in graphene.
    Déprez C; Veyrat L; Vignaud H; Nayak G; Watanabe K; Taniguchi T; Gay F; Sellier H; Sacépé B
    Nat Nanotechnol; 2021 May; 16(5):555-562. PubMed ID: 33633403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous Aharonov-Bohm Interference in the Presence of Edge Reconstruction.
    Biswas S; Kundu HK; Bhattacharyya R; Umansky V; Heiblum M
    Phys Rev Lett; 2024 Feb; 132(7):076301. PubMed ID: 38427874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanically controlled quantum interference in graphene break junctions.
    Caneva S; Gehring P; García-Suárez VM; García-Fuente A; Stefani D; Olavarria-Contreras IJ; Ferrer J; Dekker C; van der Zant HSJ
    Nat Nanotechnol; 2018 Dec; 13(12):1126-1131. PubMed ID: 30224794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Hall Interferometry in Triangular Domains of Marginally Twisted Bilayer Graphene.
    Mahapatra PS; Garg M; Ghawri B; Jayaraman A; Watanabe K; Taniguchi T; Ghosh A; Chandni U
    Nano Lett; 2022 Jul; 22(14):5708-5714. PubMed ID: 35796713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aharonov-Bohm Oscillations in Bilayer Graphene Quantum Hall Edge State Fabry-Pérot Interferometers.
    Fu H; Huang K; Watanabe K; Taniguchi T; Kayyalha M; Zhu J
    Nano Lett; 2023 Jan; 23(2):718-725. PubMed ID: 36622939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of interactions in an electronic Fabry-Perot interferometer operating in the quantum Hall effect regime.
    Ofek N; Bid A; Heiblum M; Stern A; Umansky V; Mahalu D
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5276-81. PubMed ID: 20212147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging of Carbon Nanotube Electronic States Polarized by the Field of an Excited Quantum Dot.
    Nguyen D; Wallum A; Nguyen HA; Nguyen NT; Lyding JW; Gruebele M
    ACS Nano; 2019 Feb; 13(2):1012-1018. PubMed ID: 30605600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube superconducting quantum interference device.
    Cleuziou JP; Wernsdorfer W; Bouchiat V; Ondarçuhu T; Monthioux M
    Nat Nanotechnol; 2006 Oct; 1(1):53-9. PubMed ID: 18654142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the energy spectrum of graphene quantum dot with external magnetic and Aharonov-Bohm flux fields.
    Serrano Orozco FA; Avalos Ochoa JG; Rivas XC; Cuevas Figueroa JL; Carrada HMM
    Heliyon; 2019 Aug; 5(8):e02224. PubMed ID: 31440591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aharonov-Bohm conductance modulation in ballistic carbon nanotubes.
    Lassagne B; Cleuziou JP; Nanot S; Escoffier W; Avriller R; Roche S; Forró L; Raquet B; Broto JM
    Phys Rev Lett; 2007 Apr; 98(17):176802. PubMed ID: 17501520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabry-Pérot resonances and a crossover to the quantum Hall regime in ballistic graphene quantum point contacts.
    Ahmad NF; Komatsu K; Iwasaki T; Watanabe K; Taniguchi T; Mizuta H; Wakayama Y; Hashim AM; Morita Y; Moriyama S; Nakaharai S
    Sci Rep; 2019 Feb; 9(1):3031. PubMed ID: 30816251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed-Dimensional Vertical Point p
    Zhang J; Cong L; Zhang K; Jin X; Li X; Wei Y; Li Q; Jiang K; Luo Y; Fan S
    ACS Nano; 2020 Mar; 14(3):3181-3189. PubMed ID: 32083843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common-path interference and oscillatory Zener tunneling in bilayer graphene p-n junctions.
    Nandkishore R; Levitov L
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14021-5. PubMed ID: 21825159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple-path Quantum Interference Effects in a Double-Aharonov-Bohm Interferometer.
    Yang X; Liu Y
    Nanoscale Res Lett; 2010 May; 5(7):1228-35. PubMed ID: 20596314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aharonov-Bohm effect in graphene-based Fabry-Pérot quantum Hall interferometers.
    Ronen Y; Werkmeister T; Haie Najafabadi D; Pierce AT; Anderson LE; Shin YJ; Lee SY; Lee YH; Johnson B; Watanabe K; Taniguchi T; Yacoby A; Kim P
    Nat Nanotechnol; 2021 May; 16(5):563-569. PubMed ID: 33633404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aharonov-Bohm oscillations in a quasi-ballistic three-dimensional topological insulator nanowire.
    Cho S; Dellabetta B; Zhong R; Schneeloch J; Liu T; Gu G; Gilbert MJ; Mason N
    Nat Commun; 2015 Jul; 6():7634. PubMed ID: 26158768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.