BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37267683)

  • 21. Molecular cytogenetic characterization of canine histiocytic sarcoma: A spontaneous model for human histiocytic cancer identifies deletion of tumor suppressor genes and highlights influence of genetic background on tumor behavior.
    Hedan B; Thomas R; Motsinger-Reif A; Abadie J; Andre C; Cullen J; Breen M
    BMC Cancer; 2011 May; 11():201. PubMed ID: 21615919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel locus for canine osteosarcoma (OSA1) maps to CFA34, the canine orthologue of human 3q26.
    Phillips JC; Lembcke L; Chamberlin T
    Genomics; 2010 Oct; 96(4):220-7. PubMed ID: 20647041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of the PTEN gene on adhesion, invasion and metastasis of osteosarcoma cells.
    Hu Y; Xu S; Jin W; Yi Q; Wei W
    Oncol Rep; 2014 Oct; 32(4):1741-7. PubMed ID: 25069680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Canine Mammary Tumours Are Affected by Frequent Copy Number Aberrations, including Amplification of MYC and Loss of PTEN.
    Borge KS; Nord S; Van Loo P; Lingjærde OC; Gunnes G; Alnæs GI; Solvang HK; Lüders T; Kristensen VN; Børresen-Dale AL; Lingaas F
    PLoS One; 2015; 10(5):e0126371. PubMed ID: 25955013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immunohistochemical detection of p53, PTEN, Rb, and p16 in canine osteosarcoma using tissue microarray.
    Russell DS; Jaworski L; Kisseberth WC
    J Vet Diagn Invest; 2018 Jul; 30(4):504-509. PubMed ID: 29629647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HES1, a target of Notch signaling, is elevated in canine osteosarcoma, but reduced in the most aggressive tumors.
    Dailey DD; Anfinsen KP; Pfaff LE; Ehrhart EJ; Charles JB; Bønsdorff TB; Thamm DH; Powers BE; Jonasdottir TJ; Duval DL
    BMC Vet Res; 2013 Jul; 9():130. PubMed ID: 23816051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic and clonal dissection of osteosarcoma progression and lung metastasis.
    Xu H; Zhu X; Bao H; Wh Shek T; Huang Z; Wang Y; Wu X; Wu Y; Chang Z; Wu S; Tang Q; Zhang H; Han A; Mc Cheung K; Zou C; Yau R; Ho WY; Huang G; Batalha S; Lu J; Song G; Kang Y; Shao YW; Lam YL; Shen J; Wang J
    Int J Cancer; 2018 Sep; 143(5):1134-1142. PubMed ID: 29569716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The genomic landscape of canine osteosarcoma cell lines reveals conserved structural complexity and pathway alterations.
    Megquier K; Turner-Maier J; Morrill K; Li X; Johnson J; Karlsson EK; London CA; Gardner HL
    PLoS One; 2022; 17(9):e0274383. PubMed ID: 36099278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative biology of human and canine osteosarcoma.
    Mueller F; Fuchs B; Kaser-Hotz B
    Anticancer Res; 2007; 27(1A):155-64. PubMed ID: 17352227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pan-cancer genomic analysis shows hemizygous PTEN loss tumors are associated with immune evasion and poor outcome.
    Vidotto T; Melo CM; Lautert-Dutra W; Chaves LP; Reis RB; Squire JA
    Sci Rep; 2023 Mar; 13(1):5049. PubMed ID: 36977733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MiR-221 increases osteosarcoma cell proliferation, invasion and migration partly through the downregulation of PTEN.
    Zhu J; Liu F; Wu Q; Liu X
    Int J Mol Med; 2015 Nov; 36(5):1377-83. PubMed ID: 26397386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular subtypes of osteosarcoma identified by reducing tumor heterogeneity through an interspecies comparative approach.
    Scott MC; Sarver AL; Gavin KJ; Thayanithy V; Getzy DM; Newman RA; Cutter GR; Lindblad-Toh K; Kisseberth WC; Hunter LE; Subramanian S; Breen M; Modiano JF
    Bone; 2011 Sep; 49(3):356-67. PubMed ID: 21621658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glycogen synthase kinase 3β promotes osteosarcoma invasion and migration via regulating PTEN and phosphorylation of focal adhesion kinase.
    Mai W; Kong L; Yu H; Bao J; Song C; Qu G
    Biosci Rep; 2021 Jul; 41(7):. PubMed ID: 33969873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel Germline
    Lopez C; Abuel-Haija M; Pena L; Coppola D
    Cancer Genomics Proteomics; 2018; 15(2):115-120. PubMed ID: 29496690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oncogenic and Therapeutic Targeting of PTEN Loss in Bone Malignancies.
    Xi Y; Chen Y
    J Cell Biochem; 2015 Sep; 116(9):1837-47. PubMed ID: 25773992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The degree of mitochondrial DNA methylation in tumor models of glioblastoma and osteosarcoma.
    Sun X; Vaghjiani V; Jayasekara WSN; Cain JE; St John JC
    Clin Epigenetics; 2018 Dec; 10(1):157. PubMed ID: 30558637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A genome-wide approach to comparative oncology: high-resolution oligonucleotide aCGH of canine and human osteosarcoma pinpoints shared microaberrations.
    Angstadt AY; Thayanithy V; Subramanian S; Modiano JF; Breen M
    Cancer Genet; 2012 Nov; 205(11):572-87. PubMed ID: 23137772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MicroRNA-21 promotes proliferation, invasion and suppresses apoptosis in human osteosarcoma line MG63 through PTEN/Akt pathway.
    Lv C; Hao Y; Tu G
    Tumour Biol; 2016 Jul; 37(7):9333-42. PubMed ID: 26779632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers.
    Cairns P; Evron E; Okami K; Halachmi N; Esteller M; Herman JG; Bose S; Wang SI; Parsons R; Sidransky D
    Oncogene; 1998 Jun; 16(24):3215-8. PubMed ID: 9671402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The correlation between the methylation of PTEN gene and the apoptosis of osteosarcoma cells mediated by SeHA nanoparticles.
    Wang Y; Qin N; Zhao C; Yuan J; Lu S; Li W; Xiang H; Hao H
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110499. PubMed ID: 31541893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.