These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37267725)

  • 1. Small but mighty: How microRNAs drive the deadly progression of cholangiocarcinoma.
    Jalil AT; Abdulhadi MA; Al-Ameer LR; Khaleel LA; Abdulameer SJ; Hadi AM; Merza MS; Zabibah RS; Ali A
    Pathol Res Pract; 2023 Jul; 247():154565. PubMed ID: 37267725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circular RNAs in cholangiocarcinoma.
    Liao W; Feng Q; Liu H; Du J; Chen X; Zeng Y
    Cancer Lett; 2023 Jan; 553():215980. PubMed ID: 36336149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanism of cholangiocarcinoma carcinogenesis.
    Maemura K; Natsugoe S; Takao S
    J Hepatobiliary Pancreat Sci; 2014 Oct; 21(10):754-60. PubMed ID: 24895231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of microRNAs in Cholangiocarcinoma.
    Shi T; Morishita A; Kobara H; Masaki T
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wnt/β-catenin signaling as an emerging potential key pharmacological target in cholangiocarcinoma.
    Zhang GF; Qiu L; Yang SL; Wu JC; Liu TJ
    Biosci Rep; 2020 Mar; 40(3):. PubMed ID: 32140709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2.
    Liu R; Zhao R; Zhou X; Liang X; Campbell DJ; Zhang X; Zhang L; Shi R; Wang G; Pandak WM; Sirica AE; Hylemon PB; Zhou H
    Hepatology; 2014 Sep; 60(3):908-18. PubMed ID: 24700501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precancerous bile duct pathology in end-stage primary sclerosing cholangitis, with and without cholangiocarcinoma.
    Lewis JT; Talwalkar JA; Rosen CB; Smyrk TC; Abraham SC
    Am J Surg Pathol; 2010 Jan; 34(1):27-34. PubMed ID: 19898228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relevance of Bile Acids in Cholangiocarcinoma Pathogenesis: Critical Revision and Future Directions.
    Cossiga V; Guarino M; Capasso M; Morisco F
    Cells; 2023 Jun; 12(12):. PubMed ID: 37371045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathologic classification of cholangiocarcinoma: New concepts.
    Nakanuma Y; Kakuda Y
    Best Pract Res Clin Gastroenterol; 2015 Apr; 29(2):277-93. PubMed ID: 25966428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic regulation in the carcinogenesis of cholangiocarcinoma.
    Chiang NJ; Shan YS; Hung WC; Chen LT
    Int J Biochem Cell Biol; 2015 Oct; 67():110-4. PubMed ID: 26100596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prognostic significance of microRNA-203 in cholangiocarcinoma.
    Li J; Gao B; Huang Z; Duan T; Li D; Zhang S; Zhao Y; Liu L; Wang Q; Chen Z; Cheng K
    Int J Clin Exp Pathol; 2015; 8(8):9512-6. PubMed ID: 26464713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical presentation, diagnosis and staging of cholangiocarcinoma.
    Forner A; Vidili G; Rengo M; Bujanda L; Ponz-Sarvisé M; Lamarca A
    Liver Int; 2019 May; 39 Suppl 1():98-107. PubMed ID: 30831002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-144 suppresses cholangiocarcinoma cell proliferation and invasion through targeting platelet activating factor acetylhydrolase isoform 1b.
    Yang R; Chen Y; Tang C; Li H; Wang B; Yan Q; Hu J; Zou S
    BMC Cancer; 2014 Dec; 14():917. PubMed ID: 25479763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA-27a-3p targets FoxO signalling to induce tumour-like phenotypes in bile duct cells.
    Duwe L; Munoz-Garrido P; Lewinska M; Lafuente-Barquero J; Satriano L; Høgdall D; Taranta A; Nielsen BS; Ghazal A; Matter MS; Banales JM; Aldana BI; Gao YT; Marquardt JU; Roberts LR; Oliveira RC; Koshiol J; O'Rourke CJ; Andersen JB
    J Hepatol; 2023 Feb; 78(2):364-375. PubMed ID: 36848245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peribiliary Glands as the Cellular Origin of Biliary Tract Cancer.
    Nakagawa H; Hayata Y; Yamada T; Kawamura S; Suzuki N; Koike K
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29895797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miR-28-5p inhibits cholangiocarcinoma progression and predicts good prognosis of patients.
    Chen T; Wang H; Yan H
    Cell Cycle; 2022 Oct; 21(19):2079-2090. PubMed ID: 35670491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of epigenetic regulation in cholangiocarcinogenesis.
    Zhong B; Liao Q; Wang X; Wang X; Zhang J
    Biomed Pharmacother; 2023 Oct; 166():115290. PubMed ID: 37557012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Future directions in the treatment of cholangiocarcinoma.
    Zhu AX
    Best Pract Res Clin Gastroenterol; 2015 Apr; 29(2):355-61. PubMed ID: 25966434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: molecular networks and biological concepts.
    Raggi C; Invernizzi P; Andersen JB
    J Hepatol; 2015 Jan; 62(1):198-207. PubMed ID: 25220250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha-smooth muscle actin-positive fibroblasts promote biliary cell proliferation and correlate with poor survival in cholangiocarcinoma.
    Chuaysri C; Thuwajit P; Paupairoj A; Chau-In S; Suthiphongchai T; Thuwajit C
    Oncol Rep; 2009 Apr; 21(4):957-69. PubMed ID: 19287994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.