These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37267749)

  • 21. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating.
    Kim BS; Yang SS; Park H; Lee SH; Cho YS; Lee J
    J Biomater Sci Polym Ed; 2017 Sep; 28(13):1256-1270. PubMed ID: 28598722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Natural Plant Tissue with Bioinspired Nano Amyloid and Hydroxyapatite as Green Scaffolds for Bone Regeneration.
    Li Y; Fu Y; Zhang H; Wang X; Chen T; Wu Y; Xu X; Yang S; Ji P; Song J
    Adv Healthc Mater; 2022 Jun; 11(12):e2102807. PubMed ID: 35285169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells.
    Xia L; Lin K; Jiang X; Fang B; Xu Y; Liu J; Zeng D; Zhang M; Zhang X; Chang J; Zhang Z
    Biomaterials; 2014 Oct; 35(30):8514-27. PubMed ID: 25002263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Digital Light Processing 3D Printing of Gyroid Scaffold with Isosorbide-Based Photopolymer for Bone Tissue Engineering.
    Verisqa F; Cha JR; Nguyen L; Kim HW; Knowles JC
    Biomolecules; 2022 Nov; 12(11):. PubMed ID: 36421706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration.
    Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of hydroxyapatite nanostructure on channel surface of porcine acellular dermal matrix scaffold on cell viability and osteogenic differentiation of human periodontal ligament stem cells.
    Ge S; Zhao N; Wang L; Liu H; Yang P
    Int J Nanomedicine; 2013; 8():1887-95. PubMed ID: 23690686
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold.
    Liu Z; Yin X; Ye Q; He W; Ge M; Zhou X; Hu J; Zou S
    J Biomater Appl; 2016 Jul; 31(1):121-31. PubMed ID: 27009932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of bionic tissue engineering cartilage scaffold based on three-dimensional printing and oriented frozen technology.
    Xu Y; Guo X; Yang S; Li L; Zhang P; Sun W; Liu C; Mi S
    J Biomed Mater Res A; 2018 Jun; 106(6):1664-1676. PubMed ID: 29460433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration.
    Wang Y; Xie C; Zhang Z; Liu H; Xu H; Peng Z; Liu C; Li J; Wang C; Xu T; Zhu L
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29506-29520. PubMed ID: 35729092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Eggshell derived nano-hydroxyapatite incorporated carboxymethyl chitosan scaffold for dentine regeneration: A laboratory investigation.
    Baskar K; Saravana Karthikeyan B; Gurucharan I; Mahalaxmi S; Rajkumar G; Dhivya V; Kishen A
    Int Endod J; 2022 Jan; 55(1):89-102. PubMed ID: 34617273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PEEK and Hyaluronan-Based 3D Printed Structures: Promising Combination to Improve Bone Regeneration.
    Ferroni L; D'Amora U; Leo S; Tremoli E; Raucci MG; Ronca A; Ambrosio L; Zavan B
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36557882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone ECM-like 3D Printing Scaffold with Liquid Crystalline and Viscoelastic Microenvironment for Bone Regeneration.
    Liu K; Li L; Chen J; Li Y; Wen W; Lu L; Li L; Li H; Liu M; Zhou C; Luo B
    ACS Nano; 2022 Dec; 16(12):21020-21035. PubMed ID: 36469414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration.
    Zhou X; Zhou G; Junka R; Chang N; Anwar A; Wang H; Yu X
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111420. PubMed ID: 33113493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration.
    Yang X; Ma Y; Guo W; Yang B; Tian W
    Theranostics; 2019; 9(9):2694-2711. PubMed ID: 31131062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional tooth restoration by allogeneic mesenchymal stem cell-based bio-root regeneration in swine.
    Wei F; Song T; Ding G; Xu J; Liu Y; Liu D; Fan Z; Zhang C; Shi S; Wang S
    Stem Cells Dev; 2013 Jun; 22(12):1752-62. PubMed ID: 23363023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydroxyapatite/Collagen Three-Dimensional Printed Scaffolds and Their Osteogenic Effects on Human Bone Marrow-Derived Mesenchymal Stem Cells.
    Li Q; Lei X; Wang X; Cai Z; Lyu P; Zhang G
    Tissue Eng Part A; 2019 Sep; 25(17-18):1261-1271. PubMed ID: 30648467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Precision 3D printed meniscus scaffolds to facilitate hMSCs proliferation and chondrogenic differentiation for tissue regeneration.
    Deng X; Chen X; Geng F; Tang X; Li Z; Zhang J; Wang Y; Wang F; Zheng N; Wang P; Yu X; Hou S; Zhang W
    J Nanobiotechnology; 2021 Dec; 19(1):400. PubMed ID: 34856996
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration.
    Sadeghianmaryan A; Naghieh S; Yazdanpanah Z; Alizadeh Sardroud H; Sharma NK; Wilson LD; Chen X
    Int J Biol Macromol; 2022 Apr; 204():62-75. PubMed ID: 35124017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.