BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37267793)

  • 1. Design, synthesis, and biological evaluation of artemyrianolide H derivatives as potential antihepatoma agents.
    Li TZ; Yang XT; Ma WJ; Ma YB; Li FJ; Wang YC; Chen JJ
    Bioorg Chem; 2023 Aug; 137():106617. PubMed ID: 37267793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and synthesis of guaianolide-germacranolide heterodimers as novel anticancer agents against hepatocellular carcinoma.
    Yan JX; Li QH; Li TZ; Huang ZY; Ma YB; Chen JJ
    Drug Dev Res; 2023 Sep; 84(6):1285-1298. PubMed ID: 37345274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and antihepatoma activity of guaianolide dimers derived from lavandiolide I.
    Wang X; Li TZ; Ma YB; Ma WJ; Xue D; Chen JJ
    Bioorg Med Chem Lett; 2024 May; 104():129708. PubMed ID: 38521176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis, biological evaluation, and modeling studies of novel conformationally-restricted analogues of sorafenib as selective kinase-inhibitory antiproliferative agents against hepatocellular carcinoma cells.
    Sbenati RM; Zaraei SO; El-Gamal MI; Anbar HS; Tarazi H; Zoghbor MM; Mohamood NA; Khakpour MM; Zaher DM; Omar HA; Alach NN; Shehata MK; El-Gamal R
    Eur J Med Chem; 2021 Jan; 210():113081. PubMed ID: 33310290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antihepatoma peptide, scolopentide, derived from the centipede scolopendra subspinipes mutilans.
    Hu YX; Liu Z; Zhang Z; Deng Z; Huang Z; Feng T; Zhou QH; Mei S; Yi C; Zhou Q; Zeng PH; Pei G; Tian S; Tian XF
    World J Gastroenterol; 2023 Mar; 29(12):1875-1898. PubMed ID: 37032730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artemiprinolides A-M, thirteen undescribed sesquiterpenoid dimers from Artemisia princeps and their antihepatoma activity.
    Su LH; Ma WJ; Ma YB; Li TZ; Geng CA; Dong W; He XF; Chen JJ
    Phytochemistry; 2023 Jul; 211():113714. PubMed ID: 37156434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and synthesis of novel 7-ethyl-10-fluoro-20-O-(cinnamic acid ester)-camptothecin derivatives as potential high selectivity and low toxicity topoisomerase I inhibitors for hepatocellular carcinoma.
    Bai YP; Yang CJ; Deng N; Zhang M; Zhang ZJ; Li L; Zhou Y; Luo XF; Xu CR; Zhang BQ; Ma Y; Liu YQ
    Biochem Pharmacol; 2022 Jun; 200():115049. PubMed ID: 35469784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. meta-Ureidophenoxy-1,2,3-triazole hybrid as a novel scaffold for promising HepG2 hepatocellular carcinoma inhibitors: Synthesis, biological evaluation and molecular docking studies.
    Limpachayaporn P; Nuchpun S; Sirirak J; Charoensuksai P; Wongprayoon P; Chuaypen N; Tangkijvanich P; Suksamrarn A
    Bioorg Med Chem; 2022 Nov; 74():117048. PubMed ID: 36270111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artemyriantholides A-K, guaiane-type sesquiterpenoid dimers from Artemisia myriantha var. pleiocephala and their antihepatoma activity.
    Wang MF; Li TZ; Ma YB; Ma WJ; Wang YC; Li FJ; Chen JJ
    Phytochemistry; 2024 Jun; 222():114100. PubMed ID: 38636688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, synthesis, anticancer, and docking of some S- and/or N-heterocyclic derivatives as VEGFR-2 inhibitors.
    El-Adl K; Abdel-Rahman AA; Omar AM; Alswah M; Saleh NM
    Arch Pharm (Weinheim); 2022 Feb; 355(2):e2100237. PubMed ID: 34862655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [YAP regulates the proliferation and modifies the sensitivity to sorafenib in hepatocellular carcinoma cells].
    Guo LW; Shao GL; Luo J; Hao WY; Yao Z; Zheng JP
    Zhonghua Zhong Liu Za Zhi; 2018 Nov; 40(11):818-823. PubMed ID: 30481931
    [No Abstract]   [Full Text] [Related]  

  • 12. Design, synthesis and biological evaluation of novel 1,3,4-trisubstituted pyrazole derivatives as potential chemotherapeutic agents for hepatocellular carcinoma.
    Harras MF; Sabour R
    Bioorg Chem; 2018 Aug; 78():149-157. PubMed ID: 29567429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, Characterization and Anti-hepatoma Activity of New Hederagenin Derivatives.
    Liu X; Sun L; Liu QH; Chen BQ; Liu YM
    Mini Rev Med Chem; 2020; 20(3):252-257. PubMed ID: 32134368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and synthesis of ludartin derivatives as potential anticancer agents against hepatocellular carcinoma.
    Sun JJ; Wang JP; Li TZ; Ma YB; Xue D; Chen JJ
    Med Chem Res; 2022; 31(7):1224-1239. PubMed ID: 35634434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis and in vitro antitumor activity of novel N-substituted-4-phenyl/benzylphthalazin-1-ones.
    Eldehna WM; Ibrahim HS; Abdel-Aziz HA; Farrag NN; Youssef MM
    Eur J Med Chem; 2015 Jan; 89():549-60. PubMed ID: 25462265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis and biological evaluation of novel 9-N-substituted-13-alkylberberine derivatives from Chinese medicine as anti-hepatocellular carcinoma agents.
    Chen J; Duan Y; Yang K; Wang J; Yan J; Gu C; Wang S; Zhu Z; Liu EH; Xu J
    Bioorg Med Chem; 2023 Feb; 79():117156. PubMed ID: 36640595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, molecular docking, in vitro, and in vivo studies of new quinazolin-4(3H)-ones as VEGFR-2 inhibitors with potential activity against hepatocellular carcinoma.
    Eissa IH; Ibrahim MK; Metwaly AM; Belal A; Mehany ABM; Abdelhady AA; Elhendawy MA; Radwan MM; ElSohly MA; Mahdy HA
    Bioorg Chem; 2021 Feb; 107():104532. PubMed ID: 33334586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and biological evaluation of phenyl substituted polyoxygenated xanthone derivatives as anti-hepatoma agents.
    Dai M; Yuan X; Kang J; Zhu ZJ; Yue RC; Yuan H; Chen BY; Zhang WD; Liu RH; Sun QY
    Eur J Med Chem; 2013 Nov; 69():159-66. PubMed ID: 24013415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and biological evaluations of N'-substituted methylene-4-(quinoline-4-amino) benzoylhydrazides as potential anti-hepatoma agents.
    Li B; Zhu F; He F; Huang Q; Liu X; Wu T; Zhao T; Qiu Y; Wu Z; Xue Y; Fang M
    Bioorg Chem; 2020 Mar; 96():103592. PubMed ID: 32044517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plectin deficiency in liver cancer cells promotes cell migration and sensitivity to sorafenib treatment.
    Cheng CC; Chao WT; Liao CC; Tseng YH; Lai YC; Lai YS; Hsu YH; Liu YH
    Cell Adh Migr; 2018 Jan; 12(1):19-27. PubMed ID: 28276928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.