These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37268119)

  • 1. Anthropedogenesis in coal mine overburden; the need for a comprehensive, fundamental biogeochemical approach.
    Gunathunga SU; Gagen EJ; Evans PN; Erskine PD; Southam G
    Sci Total Environ; 2023 Sep; 892():164515. PubMed ID: 37268119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eco-restoration approach for mine spoil overburden dump through biotechnological route.
    Jambhulkar HP; Kumar MS
    Environ Monit Assess; 2019 Nov; 191(12):772. PubMed ID: 31773282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can biochar reclaim coal mine spoil?
    Ghosh D; Maiti SK
    J Environ Manage; 2020 Oct; 272():111097. PubMed ID: 32854895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective coal mine overburden treatment with topsoil and compost to optimise pasture or native vegetation establishment.
    Spargo A; Doley D
    J Environ Manage; 2016 Nov; 182():342-350. PubMed ID: 27497311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geochemical assessments and classification of coal mine spoils for better understanding of potential salinity issues at closure.
    Park JH; Li X; Edraki M; Baumgartl T; Kirsch B
    Environ Sci Process Impacts; 2013 Jun; 15(6):1235-44. PubMed ID: 23644772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mine spoil acts as a sink of carbon dioxide in Indian dry tropical environment.
    Tripathi N; Singh RS; Nathanail CP
    Sci Total Environ; 2014 Jan; 468-469():1162-71. PubMed ID: 24184491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil quality index for evaluation of reclaimed coal mine spoil.
    Mukhopadhyay S; Masto RE; Yadav A; George J; Ram LC; Shukla SP
    Sci Total Environ; 2016 Jan; 542(Pt A):540-50. PubMed ID: 26524272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the role of soil geochemistry on Mn and Ca uptake on 75-year-old mine spoils in western Massachusetts, USA.
    Jordan J; Cernak RS; Richardson JB
    Environ Geochem Health; 2019 Dec; 41(6):2763-2775. PubMed ID: 31172408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of arbuscular mycorrhizal fungi on the vegetation restoration of different types of coal mine spoil banks].
    Zhao RX; Guo W; Fu RY; Zhao WJ; Guo JY; Bi N; Zhang J
    Huan Jing Ke Xue; 2013 Nov; 34(11):4447-54. PubMed ID: 24455958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Earthworm responses to different reclamation processes in post opencast mining lands during succession.
    Hlava J; Hlavová A; Hakl J; Fér M
    Environ Monit Assess; 2015 Jan; 187(1):4108. PubMed ID: 25380717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecological study of revegetated coal mine spoil of an Indian dry tropical ecosystem along an age gradient.
    Singh RS; Tripathi N; Chaulya SK
    Biodegradation; 2012 Nov; 23(6):837-49. PubMed ID: 22864538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An appraisal of the potential use of fly ash for reclaiming coal mine spoil.
    Ram LC; Masto RE
    J Environ Manage; 2010; 91(3):603-17. PubMed ID: 19914766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined bibliometric and sustainable approach of phytostabilization towards eco-restoration of coal mine overburden dumps.
    Bashir Z; Raj D; Selvasembian R
    Chemosphere; 2024 Jul; 363():142774. PubMed ID: 38969231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the salinity issue of coal mine spoils in the context of salt cycle.
    Li X; Park JH; Edraki M; Baumgartl T
    Environ Geochem Health; 2014 Jun; 36(3):453-65. PubMed ID: 24096942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobility of heavy metals associated with the natural weathering of coal mine spoils.
    Dang Z; Liu C; Haigh MJ
    Environ Pollut; 2002; 118(3):419-26. PubMed ID: 12009140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reclamation of coal mine spoil and its effect on Technosol quality and carbon sequestration: a case study from India.
    Ahirwal J; Kumar A; Pietrzykowski M; Maiti SK
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):27992-28003. PubMed ID: 30066073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass.
    Roberts DA; Cole AJ; Paul NA; de Nys R
    J Environ Manage; 2015 Sep; 161():173-180. PubMed ID: 26172107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of engineering properties for the use of leached brown coal ash in soil covers.
    Mudd GM; Chakrabarti S; Kodikara J
    J Hazard Mater; 2007 Jan; 139(3):409-12. PubMed ID: 16621267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Arbuscular Mycorrhiza and Organic Amendments to Enhance Growth of Macaranga peltata (Roxb.) Müll. Arg. in Iron Ore Mine Wastelands.
    Rodrigues CR; Rodrigues BF
    Int J Phytoremediation; 2015; 17(1-6):485-92. PubMed ID: 25495939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of arbuscular mycorrhizal fungi to the development of maize (Zea mays L.) grown in three types of coal mine spoils.
    Guo W; Zhao R; Fu R; Bi N; Wang L; Zhao W; Guo J; Zhang J
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3592-603. PubMed ID: 24271733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.