These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37268720)

  • 1. First lift-off and flight performance of a tailless flapping-wing aerial robot in high-altitude environments.
    Tsuchiya S; Aono H; Asai K; Nonomura T; Ozawa Y; Anyoji M; Ando N; Kang CK; Pohly J
    Sci Rep; 2023 Jun; 13(1):8995. PubMed ID: 37268720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Force and Deformation Measurements of Bioinspired Flapping Wings in Ultra-Low Martian Density Environment.
    McCain JL; Pohly JA; Sridhar MK; Kang CK; Landrum DB; Aono H
    Appl Aerodyn (2020); 2020 Jan; 2020():. PubMed ID: 35072172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design optimization and experimental study of a novel mechanism for a hover-able bionic flapping-wing micro air vehicle.
    Deng H; Xiao S; Huang B; Yang L; Xiang X; Ding X
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33075759
    [No Abstract]   [Full Text] [Related]  

  • 4. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling Bioinspired Mars Flight Vehicles for Hover.
    Pohly JA; Kang CK; Sridhar MK; Landrum DB; Fahimi F; Mesmer B; Bluman JE; Aono H; Lee T
    AIAA Atmos Flight Mech Conf 2019 (2019); 2019 Jan; 2019():. PubMed ID: 35072170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of flight altitude on the lift generation of monarch butterflies: from sea level to overwintering mountain.
    Sridhar MK; Kang CK; Landrum DB; Aono H; Mathis SL; Lee T
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33508811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Functions of Phasic Wing-Tip Folding on Flapping-Wing Aerodynamics.
    Li Y; Li K; Fu F; Li Y; Li B
    Biomimetics (Basel); 2024 Mar; 9(3):. PubMed ID: 38534868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerodynamic performance of flapping wing with alula under different kinematics of complex flapping motion.
    Bao H; Song B; Ma D; Xue D
    Bioinspir Biomim; 2023 Dec; 19(1):. PubMed ID: 38011727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The control of flight force by a flapping wing: lift and drag production.
    Sane SP; Dickinson MH
    J Exp Biol; 2001 Aug; 204(Pt 15):2607-26. PubMed ID: 11533111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenomenology and scaling of optimal flapping wing kinematics.
    Gehrke A; Mulleners K
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33264765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of flapping wing robot and vision-based obstacle avoidance strategy.
    Park H; Bae G; Kim I; Kim S; Oh H
    PeerJ Comput Sci; 2023; 9():e1201. PubMed ID: 37346630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An at-scale tailless flapping wing hummingbird robot: II. Flight control in hovering and trajectory tracking.
    Fei F; Tu Z; Deng X
    Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36595240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How ornithopters can perch autonomously on a branch.
    Zufferey R; Tormo-Barbero J; Feliu-Talegón D; Nekoo SR; Acosta JÁ; Ollero A
    Nat Commun; 2022 Dec; 13(1):7713. PubMed ID: 36513661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dwarf Kingfisher-Inspired Bionic Flapping Wing and Its Aerodynamic Performance at Lowest Flight Speed.
    Abas MFB; Singh B; Ahmad KA; Ng EYK; Khan T; Sebaey TA
    Biomimetics (Basel); 2022 Aug; 7(3):. PubMed ID: 36134928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation.
    Nguyen QV; Chan WL
    Bioinspir Biomim; 2018 Dec; 14(1):016015. PubMed ID: 30523879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired flapping wing robots with foldable or deformable wings: a review.
    Zhang J; Zhao N; Qu F
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36317380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.