BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37269303)

  • 1. Pluronic Induced Interparticle Attraction and Re-entrant Liquid-Liquid Phase Separation in Charged Silica Nanoparticle Suspensions.
    Kumar S; Ganguly R; Nath S; Aswal VK
    Langmuir; 2023 Jun; 39(23):8109-8119. PubMed ID: 37269303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Nanoparticle-Micelle Interactions and Resultant Phase Behavior.
    Ray D; Kumar S; Aswal VK; Kohlbrecher J
    Langmuir; 2018 Jan; 34(1):259-267. PubMed ID: 29202235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of nonionic surfactant on silica nanoparticles: structure and resultant interparticle interactions.
    Sharma KP; Aswal VK; Kumaraswamy G
    J Phys Chem B; 2010 Sep; 114(34):10986-94. PubMed ID: 20687569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the adsorption of nonionic micelles on different-sized nanoparticles by scattering techniques.
    Singh H; Ray D; Kumar S; Takata SI; Aswal VK; Seto H
    Phys Rev E; 2020 Dec; 102(6-1):062601. PubMed ID: 33465948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between Interparticle Potential and Adsorption Structure in Nanoparticle Dispersions with Polymer Addition as Displayed by Small-Angle Scattering.
    Kusano T; Kumano N; Yoshimune W; Munekata T; Matsunaga T; Harada M
    Langmuir; 2021 Jun; 37(24):7503-7512. PubMed ID: 34110836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.
    Kumar S; Aswal VK; Kohlbrecher J
    Langmuir; 2016 Feb; 32(6):1450-9. PubMed ID: 26795459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of adsorption versus depletion interaction for charged silica nanoparticles in the presence of non-ionic surfactant.
    Ray D; Aswal VK
    J Phys Condens Matter; 2014 Jan; 26(3):035102. PubMed ID: 24285358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of nanoparticle addition on the properties of wormlike micellar solutions.
    Nettesheim F; Liberatore MW; Hodgdon TK; Wagner NJ; Kaler EW; Vethamuthu M
    Langmuir; 2008 Aug; 24(15):7718-26. PubMed ID: 18620438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and interaction in the polymer-dependent reentrant phase behavior of a charged nanoparticle solution.
    Kumar S; Ray D; Aswal VK; Kohlbrecher J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042316. PubMed ID: 25375503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interparticle interactions in concentrated suspensions and their bulk (rheological) properties.
    Tadros T
    Adv Colloid Interface Sci; 2011 Oct; 168(1-2):263-77. PubMed ID: 21632031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle-Protein Systems.
    Yadav I; Kumar S; Aswal VK; Kohlbrecher J
    Langmuir; 2017 Feb; 33(5):1227-1238. PubMed ID: 28079383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of a triblock copolymer on phase behavior and shear-induced topologies of a surfactant lamellar phase.
    Fujii S; Koschoreck S; Lindner P; Richtering W
    Langmuir; 2009 May; 25(10):5476-83. PubMed ID: 19388635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning of nanoparticle-surfactant interactions in aqueous system.
    Kumar S; Aswal VK
    J Phys Condens Matter; 2011 Jan; 23(3):035101. PubMed ID: 21406856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle-nanobubble interactions: Charge inversion and re-entrant condensation of amidine latex nanoparticles driven by bulk nanobubbles.
    Zhang M; Seddon JRT; Lemay SG
    J Colloid Interface Sci; 2019 Mar; 538():605-610. PubMed ID: 30553093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nanoparticle on rheological properties of surfactant-based nanofluid for effective carbon utilization: capturing and storage prospects.
    Kumar RS; Goswami R; Chaturvedi KR; Sharma T
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):53578-53593. PubMed ID: 34036498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins.
    Yadav I; Aswal VK; Kohlbrecher J
    Phys Rev E; 2016 May; 93(5):052601. PubMed ID: 27300945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive induced core and corona specific dehydration and ensuing growth and interaction of Pluronic F127 micelles.
    Dey J; Kumar S; Nath S; Ganguly R; Aswal VK; Ismail K
    J Colloid Interface Sci; 2014 Feb; 415():95-102. PubMed ID: 24267335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time dependent growth of the block copolymer P123 micelles near cloud point: employing heat cycling as a tool to form kinetically stable wormlike micelles.
    Ganguly R; Kumbhakar M; Aswal VK
    J Phys Chem B; 2009 Jul; 113(28):9441-6. PubMed ID: 19586071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of a hydrophobic diol on the micellar transitions of Pluronic P85 in aqueous solution.
    Bharatiya B; Aswal VK; Hassan PA; Bahadur P
    J Colloid Interface Sci; 2008 Apr; 320(2):452-9. PubMed ID: 18275966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of lipid liquid crystalline nanoparticles: effects of particle composition, internal structure, and phase behavior.
    Chang DP; Jankunec M; Barauskas J; Tiberg F; Nylander T
    Langmuir; 2012 Jul; 28(29):10688-96. PubMed ID: 22725977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.