These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 37269798)

  • 1. Repair and tolerance of DNA damage at the replication fork: A structural perspective.
    Eichman BF
    Curr Opin Struct Biol; 2023 Aug; 81():102618. PubMed ID: 37269798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lesion Bypass and the Reactivation of Stalled Replication Forks.
    Marians KJ
    Annu Rev Biochem; 2018 Jun; 87():217-238. PubMed ID: 29298091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycobacterium tuberculosis RecG protein but not RuvAB or RecA protein is efficient at remodeling the stalled replication forks: implications for multiple mechanisms of replication restart in mycobacteria.
    Thakur RS; Basavaraju S; Khanduja JS; Muniyappa K; Nagaraju G
    J Biol Chem; 2015 Oct; 290(40):24119-39. PubMed ID: 26276393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication-Coupled DNA Repair.
    Cortez D
    Mol Cell; 2019 Jun; 74(5):866-876. PubMed ID: 31173722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Making Choices: DNA Replication Fork Recovery Mechanisms.
    Kondratick CM; Washington MT; Spies M
    Semin Cell Dev Biol; 2021 May; 113():27-37. PubMed ID: 33967572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication fork dynamics and the DNA damage response.
    Jones RM; Petermann E
    Biochem J; 2012 Apr; 443(1):13-26. PubMed ID: 22417748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms and regulation of replication fork reversal.
    Adolph MB; Cortez D
    DNA Repair (Amst); 2024 Sep; 141():103731. PubMed ID: 39089193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay of replication checkpoints and repair proteins at stalled replication forks.
    Branzei D; Foiani M
    DNA Repair (Amst); 2007 Jul; 6(7):994-1003. PubMed ID: 17382606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease.
    Joseph SA; Taglialatela A; Leuzzi G; Huang JW; Cuella-Martin R; Ciccia A
    DNA Repair (Amst); 2020 Nov; 95():102943. PubMed ID: 32971328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights.
    Thompson LH; Hinz JM
    Mutat Res; 2009 Jul; 668(1-2):54-72. PubMed ID: 19622404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impediments to replication fork movement: stabilisation, reactivation and genome instability.
    Lambert S; Carr AM
    Chromosoma; 2013 Mar; 122(1-2):33-45. PubMed ID: 23446515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preventing replication fork collapse to maintain genome integrity.
    Cortez D
    DNA Repair (Amst); 2015 Aug; 32():149-157. PubMed ID: 25957489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Template-switching during replication fork repair in bacteria.
    Lovett ST
    DNA Repair (Amst); 2017 Aug; 56():118-128. PubMed ID: 28641943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EXO5-DNA structure and BLM interactions direct DNA resection critical for ATR-dependent replication restart.
    Hambarde S; Tsai CL; Pandita RK; Bacolla A; Maitra A; Charaka V; Hunt CR; Kumar R; Limbo O; Le Meur R; Chazin WJ; Tsutakawa SE; Russell P; Schlacher K; Pandita TK; Tainer JA
    Mol Cell; 2021 Jul; 81(14):2989-3006.e9. PubMed ID: 34197737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RADX prevents genome instability by confining replication fork reversal to stalled forks.
    Krishnamoorthy A; Jackson J; Mohamed T; Adolph M; Vindigni A; Cortez D
    Mol Cell; 2021 Jul; 81(14):3007-3017.e5. PubMed ID: 34107305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replication fork reversal and the maintenance of genome stability.
    Atkinson J; McGlynn P
    Nucleic Acids Res; 2009 Jun; 37(11):3475-92. PubMed ID: 19406929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replisome structure suggests mechanism for continuous fork progression and post-replication repair.
    Yang W; Seidman MM; Rupp WD; Gao Y
    DNA Repair (Amst); 2019 Sep; 81():102658. PubMed ID: 31303546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of damage tolerance and repair during DNA replication.
    Ashour ME; Mosammaparast N
    Nucleic Acids Res; 2021 Apr; 49(6):3033-3047. PubMed ID: 33693881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of replication fork speed: Mechanisms and impact on genomic stability.
    Merchut-Maya JM; Bartek J; Maya-Mendoza A
    DNA Repair (Amst); 2019 Sep; 81():102654. PubMed ID: 31320249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maintaining genome stability at the replication fork.
    Branzei D; Foiani M
    Nat Rev Mol Cell Biol; 2010 Mar; 11(3):208-19. PubMed ID: 20177396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.