BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 37269798)

  • 21. The ATR pathway: fine-tuning the fork.
    Paulsen RD; Cimprich KA
    DNA Repair (Amst); 2007 Jul; 6(7):953-66. PubMed ID: 17531546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implications of ubiquitination and the maintenance of replication fork stability in cancer therapy.
    Xia D; Zhu X; Wang Y; Gong P; Su HS; Xu X
    Biosci Rep; 2023 Oct; 43(10):. PubMed ID: 37728310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Location, Location, Location: The Role of Nuclear Positioning in the Repair of Collapsed Forks and Protection of Genome Stability.
    Whalen JM; Freudenreich CH
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32526925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovery of arrested replication forks by homologous recombination is error-prone.
    Iraqui I; Chekkal Y; Jmari N; Pietrobon V; Fréon K; Costes A; Lambert SA
    PLoS Genet; 2012; 8(10):e1002976. PubMed ID: 23093942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.
    Wu Y; Lee SH; Williamson EA; Reinert BL; Cho JH; Xia F; Jaiswal AS; Srinivasan G; Patel B; Brantley A; Zhou D; Shao L; Pathak R; Hauer-Jensen M; Singh S; Kong K; Wu X; Kim HS; Beissbarth T; Gaedcke J; Burma S; Nickoloff JA; Hromas RA
    PLoS Genet; 2015 Dec; 11(12):e1005675. PubMed ID: 26684013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA damage tolerance by recombination: Molecular pathways and DNA structures.
    Branzei D; Szakal B
    DNA Repair (Amst); 2016 Aug; 44():68-75. PubMed ID: 27236213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A tough row to hoe: when replication forks encounter DNA damage.
    Patel DR; Weiss RS
    Biochem Soc Trans; 2018 Dec; 46(6):1643-1651. PubMed ID: 30514768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple pathways process stalled replication forks.
    Michel B; Grompone G; Florès MJ; Bidnenko V
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12783-8. PubMed ID: 15328417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Building up and breaking down: mechanisms controlling recombination during replication.
    Branzei D; Szakal B
    Crit Rev Biochem Mol Biol; 2017 Aug; 52(4):381-394. PubMed ID: 28325102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequential role of RAD51 paralog complexes in replication fork remodeling and restart.
    Berti M; Teloni F; Mijic S; Ursich S; Fuchs J; Palumbieri MD; Krietsch J; Schmid JA; Garcin EB; Gon S; Modesti M; Altmeyer M; Lopes M
    Nat Commun; 2020 Jul; 11(1):3531. PubMed ID: 32669601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model.
    Barbour L; Xiao W
    Mutat Res; 2003 Nov; 532(1-2):137-55. PubMed ID: 14643434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loss of Caenorhabditis elegans BRCA1 promotes genome stability during replication in smc-5 mutants.
    Wolters S; Ermolaeva MA; Bickel JS; Fingerhut JM; Khanikar J; Chan RC; Schumacher B
    Genetics; 2014 Apr; 196(4):985-99. PubMed ID: 24424777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity.
    Vujanovic M; Krietsch J; Raso MC; Terraneo N; Zellweger R; Schmid JA; Taglialatela A; Huang JW; Holland CL; Zwicky K; Herrador R; Jacobs H; Cortez D; Ciccia A; Penengo L; Lopes M
    Mol Cell; 2017 Sep; 67(5):882-890.e5. PubMed ID: 28886337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Requirement of replication checkpoint protein kinases Mec1/Rad53 for postreplication repair in yeast.
    Gangavarapu V; Santa Maria SR; Prakash S; Prakash L
    mBio; 2011; 2(3):e00079-11. PubMed ID: 21586645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prevention of unwanted recombination at damaged replication forks.
    Lehmann CP; Jiménez-Martín A; Branzei D; Tercero JA
    Curr Genet; 2020 Dec; 66(6):1045-1051. PubMed ID: 32671464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Restarted replication forks are error-prone and cause CAG repeat expansions and contractions.
    Gold MA; Whalen JM; Freon K; Hong Z; Iraqui I; Lambert SAE; Freudenreich CH
    PLoS Genet; 2021 Oct; 17(10):e1009863. PubMed ID: 34673780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The nonmutagenic repair of broken replication forks via recombination.
    Cox MM
    Mutat Res; 2002 Dec; 510(1-2):107-20. PubMed ID: 12459447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Replication stress induces specific enrichment of RECQ1 at common fragile sites FRA3B and FRA16D.
    Lu X; Parvathaneni S; Hara T; Lal A; Sharma S
    Mol Cancer; 2013 Apr; 12(1):29. PubMed ID: 23601052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of replication fork protection: a safeguard for genome stability.
    Errico A; Costanzo V
    Crit Rev Biochem Mol Biol; 2012; 47(3):222-35. PubMed ID: 22324461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rad52 prevents excessive replication fork reversal and protects from nascent strand degradation.
    Malacaria E; Pugliese GM; Honda M; Marabitti V; Aiello FA; Spies M; Franchitto A; Pichierri P
    Nat Commun; 2019 Mar; 10(1):1412. PubMed ID: 30926821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.