These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 37269807)
1. Impact of non-proteinogenic amino acid norvaline and proteinogenic valine misincorporation on a secondary structure of a model peptide. Škibola Z; Sovulj IG; Maršavelski A J Mol Graph Model; 2023 Sep; 123():108528. PubMed ID: 37269807 [TBL] [Abstract][Full Text] [Related]
2. Resilience and proteome response of Escherichia coli to high levels of isoleucine mistranslation. Pranjic M; Spät P; Semanjski Curkovic M; Macek B; Gruic-Sovulj I; Mocibob M Int J Biol Macromol; 2024 Mar; 262(Pt 1):130068. PubMed ID: 38340920 [TBL] [Abstract][Full Text] [Related]
3. On the Mechanism and Origin of Isoleucyl-tRNA Synthetase Editing against Norvaline. Bilus M; Semanjski M; Mocibob M; Zivkovic I; Cvetesic N; Tawfik DS; Toth-Petroczy A; Macek B; Gruic-Sovulj I J Mol Biol; 2019 Mar; 431(6):1284-1297. PubMed ID: 30711543 [TBL] [Abstract][Full Text] [Related]
4. Attenuation of the editing activity of the Escherichia coli leucyl-tRNA synthetase allows incorporation of novel amino acids into proteins in vivo. Tang Y; Tirrell DA Biochemistry; 2002 Aug; 41(34):10635-45. PubMed ID: 12186549 [TBL] [Abstract][Full Text] [Related]
5. Proteome-wide measurement of non-canonical bacterial mistranslation by quantitative mass spectrometry of protein modifications. Cvetesic N; Semanjski M; Soufi B; Krug K; Gruic-Sovulj I; Macek B Sci Rep; 2016 Jul; 6():28631. PubMed ID: 27377007 [TBL] [Abstract][Full Text] [Related]
6. New hydrophobic L-amino acid salts: maleates of L-leucine, L-isoleucine and L-norvaline. Arkhipov SG; Rychkov DA; Pugachev AM; Boldyreva EV Acta Crystallogr C Struct Chem; 2015 Jul; 71(Pt 7):584-92. PubMed ID: 26146397 [TBL] [Abstract][Full Text] [Related]
7. Incorporation of norvaline at leucine positions in recombinant human hemoglobin expressed in Escherichia coli. Apostol I; Levine J; Lippincott J; Leach J; Hess E; Glascock CB; Weickert MJ; Blackmore R J Biol Chem; 1997 Nov; 272(46):28980-8. PubMed ID: 9360970 [TBL] [Abstract][Full Text] [Related]
8. Trace element associated reduction of norleucine and norvaline accumulation during oxygen limitation in a recombinant Escherichia coli fermentation. Biermann M; Linnemann J; Knüpfer U; Vollstädt S; Bardl B; Seidel G; Horn U Microb Cell Fact; 2013 Nov; 12():116. PubMed ID: 24261588 [TBL] [Abstract][Full Text] [Related]
9. Lack of discrimination against non-proteinogenic amino acid norvaline by elongation factor Tu from Cvetesic N; Akmacic I; Gruic-Sovulj I Croat Chem Acta; 2013; 86(1):73-82. PubMed ID: 23750044 [TBL] [Abstract][Full Text] [Related]
10. Interplay between mistranslation and oxidative stress in Ević V; Rokov-Plavec J Arh Hig Rada Toksikol; 2024 Jun; 75(2):147-154. PubMed ID: 38963138 [TBL] [Abstract][Full Text] [Related]
11. NMR analyses of the conformations of L-isoleucine and L-valine bound to Escherichia coli isoleucyl-tRNA synthetase. Kohda D; Kawai G; Yokoyama S; Kawakami M; Mizushima S; Miyazawa T Biochemistry; 1987 Oct; 26(20):6531-8. PubMed ID: 3322383 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of discrimination of isoleucyl-tRNA synthetase against nonproteinogenic α-aminobutyrate and its fluorinated analogues. Zivkovic I; Moschner J; Koksch B; Gruic-Sovulj I FEBS J; 2020 Feb; 287(4):800-813. PubMed ID: 31486189 [TBL] [Abstract][Full Text] [Related]
13. The physiological target for LeuRS translational quality control is norvaline. Cvetesic N; Palencia A; Halasz I; Cusack S; Gruic-Sovulj I EMBO J; 2014 Aug; 33(15):1639-53. PubMed ID: 24935946 [TBL] [Abstract][Full Text] [Related]
14. Amino acid selectivity in the aminoacylation of coenzyme A and RNA minihelices by aminoacyl-tRNA synthetases. Jakubowski H J Biol Chem; 2000 Nov; 275(45):34845-8. PubMed ID: 10995737 [TBL] [Abstract][Full Text] [Related]
15. The tRNA A76 Hydroxyl Groups Control Partitioning of the tRNA-dependent Pre- and Post-transfer Editing Pathways in Class I tRNA Synthetase. Cvetesic N; Bilus M; Gruic-Sovulj I J Biol Chem; 2015 May; 290(22):13981-91. PubMed ID: 25873392 [TBL] [Abstract][Full Text] [Related]
16. Improvement of substrate recognition in branched-chain aminoacyl-tRNA synthetases from Escherichia coli under conditions of pyrophosphate amplification. Nakatsuka-Mori T; Sato D; Aoki H J Biosci Bioeng; 2022 May; 133(5):436-443. PubMed ID: 35216933 [TBL] [Abstract][Full Text] [Related]
17. Stereoselective synthesis of S-norvaline and related amino acids through a common intermediate. Espinoza-Hicks JC; Chavez-Flores D; Zaragoza-Galan G; Camacho-Davila AA Amino Acids; 2023 Jul; 55(7):939-946. PubMed ID: 37294378 [TBL] [Abstract][Full Text] [Related]
18. Ligand-free and -bound structures of the binding protein (LivJ) of the Escherichia coli ABC leucine/isoleucine/valine transport system: trajectory and dynamics of the interdomain rotation and ligand specificity. Trakhanov S; Vyas NK; Luecke H; Kristensen DM; Ma J; Quiocho FA Biochemistry; 2005 May; 44(17):6597-608. PubMed ID: 15850393 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and screening of an indexed motif-library containing non-proteinogenic amino acids. Ostergaard S; Holm A J Pept Sci; 1997; 3(2):123-32. PubMed ID: 9230477 [TBL] [Abstract][Full Text] [Related]
20. Valyl-tRNA synthetase from Escherichia coli MALDI-MS identification of the binding sites for L-valine or for noncognate amino acids upon qualitative comparative labeling with reactive amino-acid analogs. Hountondji C; Beauvallet C; Dessen P; Hoang-Naudin C; Schmitter JM; Pernollet JC; Blanquet S Eur J Biochem; 2000 Aug; 267(15):4789-98. PubMed ID: 10903513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]